Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{-18\times 3}{\left(-\frac{1\times 11+7}{11}\right)\left(1\times 3+2\right)}}{-\frac{2\times 9+4}{9}}
Divide \frac{-18}{-\frac{1\times 11+7}{11}} by \frac{1\times 3+2}{3} by multiplying \frac{-18}{-\frac{1\times 11+7}{11}} by the reciprocal of \frac{1\times 3+2}{3}.
\frac{\frac{-54}{\left(-\frac{1\times 11+7}{11}\right)\left(1\times 3+2\right)}}{-\frac{2\times 9+4}{9}}
Multiply -18 and 3 to get -54.
\frac{\frac{-54}{\left(-\frac{11+7}{11}\right)\left(1\times 3+2\right)}}{-\frac{2\times 9+4}{9}}
Multiply 1 and 11 to get 11.
\frac{\frac{-54}{-\frac{18}{11}\left(3+2\right)}}{-\frac{2\times 9+4}{9}}
Add 11 and 7 to get 18.
\frac{\frac{-54}{-\frac{18}{11}\times 5}}{-\frac{2\times 9+4}{9}}
Add 3 and 2 to get 5.
\frac{\frac{-54}{\frac{-18\times 5}{11}}}{-\frac{2\times 9+4}{9}}
Express -\frac{18}{11}\times 5 as a single fraction.
\frac{\frac{-54}{\frac{-90}{11}}}{-\frac{2\times 9+4}{9}}
Multiply -18 and 5 to get -90.
\frac{\frac{-54}{-\frac{90}{11}}}{-\frac{2\times 9+4}{9}}
Fraction \frac{-90}{11} can be rewritten as -\frac{90}{11} by extracting the negative sign.
\frac{-54\left(-\frac{11}{90}\right)}{-\frac{2\times 9+4}{9}}
Divide -54 by -\frac{90}{11} by multiplying -54 by the reciprocal of -\frac{90}{11}.
\frac{\frac{-54\left(-11\right)}{90}}{-\frac{2\times 9+4}{9}}
Express -54\left(-\frac{11}{90}\right) as a single fraction.
\frac{\frac{594}{90}}{-\frac{2\times 9+4}{9}}
Multiply -54 and -11 to get 594.
\frac{\frac{33}{5}}{-\frac{2\times 9+4}{9}}
Reduce the fraction \frac{594}{90} to lowest terms by extracting and canceling out 18.
\frac{\frac{33}{5}}{-\frac{18+4}{9}}
Multiply 2 and 9 to get 18.
\frac{\frac{33}{5}}{-\frac{22}{9}}
Add 18 and 4 to get 22.
\frac{33}{5}\left(-\frac{9}{22}\right)
Divide \frac{33}{5} by -\frac{22}{9} by multiplying \frac{33}{5} by the reciprocal of -\frac{22}{9}.
\frac{33\left(-9\right)}{5\times 22}
Multiply \frac{33}{5} times -\frac{9}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{-297}{110}
Do the multiplications in the fraction \frac{33\left(-9\right)}{5\times 22}.
-\frac{27}{10}
Reduce the fraction \frac{-297}{110} to lowest terms by extracting and canceling out 11.