Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-18i}{2+3i}
Subtract i from -17i to get -18i.
\frac{-18i\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-3i.
\frac{-18i\left(2-3i\right)}{2^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-18i\left(2-3i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-18i\times 2-18\left(-3\right)i^{2}}{13}
Multiply -18i times 2-3i.
\frac{-18i\times 2-18\left(-3\right)\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{-54-36i}{13}
Do the multiplications in -18i\times 2-18\left(-3\right)\left(-1\right). Reorder the terms.
-\frac{54}{13}-\frac{36}{13}i
Divide -54-36i by 13 to get -\frac{54}{13}-\frac{36}{13}i.
Re(\frac{-18i}{2+3i})
Subtract i from -17i to get -18i.
Re(\frac{-18i\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)})
Multiply both numerator and denominator of \frac{-18i}{2+3i} by the complex conjugate of the denominator, 2-3i.
Re(\frac{-18i\left(2-3i\right)}{2^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-18i\left(2-3i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-18i\times 2-18\left(-3\right)i^{2}}{13})
Multiply -18i times 2-3i.
Re(\frac{-18i\times 2-18\left(-3\right)\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{-54-36i}{13})
Do the multiplications in -18i\times 2-18\left(-3\right)\left(-1\right). Reorder the terms.
Re(-\frac{54}{13}-\frac{36}{13}i)
Divide -54-36i by 13 to get -\frac{54}{13}-\frac{36}{13}i.
-\frac{54}{13}
The real part of -\frac{54}{13}-\frac{36}{13}i is -\frac{54}{13}.