Evaluate
-8
Factor
-8
Share
Copied to clipboard
-\frac{64+3}{4}-\left(-\frac{10\times 4+1}{4}\right)-\frac{1\times 2+1}{2}
Multiply 16 and 4 to get 64.
-\frac{67}{4}-\left(-\frac{10\times 4+1}{4}\right)-\frac{1\times 2+1}{2}
Add 64 and 3 to get 67.
-\frac{67}{4}-\left(-\frac{40+1}{4}\right)-\frac{1\times 2+1}{2}
Multiply 10 and 4 to get 40.
-\frac{67}{4}-\left(-\frac{41}{4}\right)-\frac{1\times 2+1}{2}
Add 40 and 1 to get 41.
-\frac{67}{4}+\frac{41}{4}-\frac{1\times 2+1}{2}
The opposite of -\frac{41}{4} is \frac{41}{4}.
\frac{-67+41}{4}-\frac{1\times 2+1}{2}
Since -\frac{67}{4} and \frac{41}{4} have the same denominator, add them by adding their numerators.
\frac{-26}{4}-\frac{1\times 2+1}{2}
Add -67 and 41 to get -26.
-\frac{13}{2}-\frac{1\times 2+1}{2}
Reduce the fraction \frac{-26}{4} to lowest terms by extracting and canceling out 2.
-\frac{13}{2}-\frac{2+1}{2}
Multiply 1 and 2 to get 2.
-\frac{13}{2}-\frac{3}{2}
Add 2 and 1 to get 3.
\frac{-13-3}{2}
Since -\frac{13}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-16}{2}
Subtract 3 from -13 to get -16.
-8
Divide -16 by 2 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}