Evaluate
-\frac{16}{21}\approx -0.761904762
Factor
-\frac{16}{21} = -0.7619047619047619
Share
Copied to clipboard
\frac{-\frac{36+2}{3}}{14}-\frac{-\frac{8\times 3+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Multiply 12 and 3 to get 36.
\frac{-\frac{38}{3}}{14}-\frac{-\frac{8\times 3+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Add 36 and 2 to get 38.
\frac{-38}{3\times 14}-\frac{-\frac{8\times 3+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Express \frac{-\frac{38}{3}}{14} as a single fraction.
\frac{-38}{42}-\frac{-\frac{8\times 3+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Multiply 3 and 14 to get 42.
-\frac{19}{21}-\frac{-\frac{8\times 3+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Reduce the fraction \frac{-38}{42} to lowest terms by extracting and canceling out 2.
-\frac{19}{21}-\frac{-\frac{24+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Multiply 8 and 3 to get 24.
-\frac{19}{21}-\frac{-\frac{25}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Add 24 and 1 to get 25.
-\frac{19}{21}-\frac{-25}{3\left(-14\right)}+\frac{\frac{10\times 3+1}{3}}{14}
Express \frac{-\frac{25}{3}}{-14} as a single fraction.
-\frac{19}{21}-\frac{-25}{-42}+\frac{\frac{10\times 3+1}{3}}{14}
Multiply 3 and -14 to get -42.
-\frac{19}{21}-\frac{25}{42}+\frac{\frac{10\times 3+1}{3}}{14}
Fraction \frac{-25}{-42} can be simplified to \frac{25}{42} by removing the negative sign from both the numerator and the denominator.
-\frac{38}{42}-\frac{25}{42}+\frac{\frac{10\times 3+1}{3}}{14}
Least common multiple of 21 and 42 is 42. Convert -\frac{19}{21} and \frac{25}{42} to fractions with denominator 42.
\frac{-38-25}{42}+\frac{\frac{10\times 3+1}{3}}{14}
Since -\frac{38}{42} and \frac{25}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{-63}{42}+\frac{\frac{10\times 3+1}{3}}{14}
Subtract 25 from -38 to get -63.
-\frac{3}{2}+\frac{\frac{10\times 3+1}{3}}{14}
Reduce the fraction \frac{-63}{42} to lowest terms by extracting and canceling out 21.
-\frac{3}{2}+\frac{10\times 3+1}{3\times 14}
Express \frac{\frac{10\times 3+1}{3}}{14} as a single fraction.
-\frac{3}{2}+\frac{30+1}{3\times 14}
Multiply 10 and 3 to get 30.
-\frac{3}{2}+\frac{31}{3\times 14}
Add 30 and 1 to get 31.
-\frac{3}{2}+\frac{31}{42}
Multiply 3 and 14 to get 42.
-\frac{63}{42}+\frac{31}{42}
Least common multiple of 2 and 42 is 42. Convert -\frac{3}{2} and \frac{31}{42} to fractions with denominator 42.
\frac{-63+31}{42}
Since -\frac{63}{42} and \frac{31}{42} have the same denominator, add them by adding their numerators.
\frac{-32}{42}
Add -63 and 31 to get -32.
-\frac{16}{21}
Reduce the fraction \frac{-32}{42} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}