Evaluate
-\frac{160}{21}\approx -7.619047619
Factor
-\frac{160}{21} = -7\frac{13}{21} = -7.619047619047619
Share
Copied to clipboard
\frac{-\frac{36+2}{3}}{1.4}-\frac{-\frac{8\times 3+1}{3}}{-1.4}+\frac{\frac{10\times 3+1}{3}}{1.4}
Multiply 12 and 3 to get 36.
\frac{-\frac{38}{3}}{1.4}-\frac{-\frac{8\times 3+1}{3}}{-1.4}+\frac{\frac{10\times 3+1}{3}}{1.4}
Add 36 and 2 to get 38.
\frac{-38}{3\times 1.4}-\frac{-\frac{8\times 3+1}{3}}{-1.4}+\frac{\frac{10\times 3+1}{3}}{1.4}
Express \frac{-\frac{38}{3}}{1.4} as a single fraction.
\frac{-38}{4.2}-\frac{-\frac{8\times 3+1}{3}}{-1.4}+\frac{\frac{10\times 3+1}{3}}{1.4}
Multiply 3 and 1.4 to get 4.2.
\frac{-380}{42}-\frac{-\frac{8\times 3+1}{3}}{-1.4}+\frac{\frac{10\times 3+1}{3}}{1.4}
Expand \frac{-38}{4.2} by multiplying both numerator and the denominator by 10.
-\frac{190}{21}-\frac{-\frac{8\times 3+1}{3}}{-1.4}+\frac{\frac{10\times 3+1}{3}}{1.4}
Reduce the fraction \frac{-380}{42} to lowest terms by extracting and canceling out 2.
-\frac{190}{21}-\frac{-\frac{24+1}{3}}{-1.4}+\frac{\frac{10\times 3+1}{3}}{1.4}
Multiply 8 and 3 to get 24.
-\frac{190}{21}-\frac{-\frac{25}{3}}{-1.4}+\frac{\frac{10\times 3+1}{3}}{1.4}
Add 24 and 1 to get 25.
-\frac{190}{21}-\frac{-25}{3\left(-1.4\right)}+\frac{\frac{10\times 3+1}{3}}{1.4}
Express \frac{-\frac{25}{3}}{-1.4} as a single fraction.
-\frac{190}{21}-\frac{-25}{-4.2}+\frac{\frac{10\times 3+1}{3}}{1.4}
Multiply 3 and -1.4 to get -4.2.
-\frac{190}{21}-\frac{-250}{-42}+\frac{\frac{10\times 3+1}{3}}{1.4}
Expand \frac{-25}{-4.2} by multiplying both numerator and the denominator by 10.
-\frac{190}{21}-\frac{125}{21}+\frac{\frac{10\times 3+1}{3}}{1.4}
Reduce the fraction \frac{-250}{-42} to lowest terms by extracting and canceling out -2.
\frac{-190-125}{21}+\frac{\frac{10\times 3+1}{3}}{1.4}
Since -\frac{190}{21} and \frac{125}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{-315}{21}+\frac{\frac{10\times 3+1}{3}}{1.4}
Subtract 125 from -190 to get -315.
-15+\frac{\frac{10\times 3+1}{3}}{1.4}
Divide -315 by 21 to get -15.
-15+\frac{10\times 3+1}{3\times 1.4}
Express \frac{\frac{10\times 3+1}{3}}{1.4} as a single fraction.
-15+\frac{30+1}{3\times 1.4}
Multiply 10 and 3 to get 30.
-15+\frac{31}{3\times 1.4}
Add 30 and 1 to get 31.
-15+\frac{31}{4.2}
Multiply 3 and 1.4 to get 4.2.
-15+\frac{310}{42}
Expand \frac{31}{4.2} by multiplying both numerator and the denominator by 10.
-15+\frac{155}{21}
Reduce the fraction \frac{310}{42} to lowest terms by extracting and canceling out 2.
-\frac{315}{21}+\frac{155}{21}
Convert -15 to fraction -\frac{315}{21}.
\frac{-315+155}{21}
Since -\frac{315}{21} and \frac{155}{21} have the same denominator, add them by adding their numerators.
-\frac{160}{21}
Add -315 and 155 to get -160.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}