Evaluate
-6.1
Factor
-6.1
Share
Copied to clipboard
-\frac{24+1}{2}-\left(-6.5-\left(-6.3\right)-\frac{6\times 5+1}{5}\right)
Multiply 12 and 2 to get 24.
-\frac{25}{2}-\left(-6.5-\left(-6.3\right)-\frac{6\times 5+1}{5}\right)
Add 24 and 1 to get 25.
-\frac{25}{2}-\left(-6.5+6.3-\frac{6\times 5+1}{5}\right)
The opposite of -6.3 is 6.3.
-\frac{25}{2}-\left(-0.2-\frac{6\times 5+1}{5}\right)
Add -6.5 and 6.3 to get -0.2.
-\frac{25}{2}-\left(-0.2-\frac{30+1}{5}\right)
Multiply 6 and 5 to get 30.
-\frac{25}{2}-\left(-0.2-\frac{31}{5}\right)
Add 30 and 1 to get 31.
-\frac{25}{2}-\left(-\frac{1}{5}-\frac{31}{5}\right)
Convert decimal number -0.2 to fraction -\frac{2}{10}. Reduce the fraction -\frac{2}{10} to lowest terms by extracting and canceling out 2.
-\frac{25}{2}-\frac{-1-31}{5}
Since -\frac{1}{5} and \frac{31}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{25}{2}-\left(-\frac{32}{5}\right)
Subtract 31 from -1 to get -32.
-\frac{25}{2}+\frac{32}{5}
The opposite of -\frac{32}{5} is \frac{32}{5}.
-\frac{125}{10}+\frac{64}{10}
Least common multiple of 2 and 5 is 10. Convert -\frac{25}{2} and \frac{32}{5} to fractions with denominator 10.
\frac{-125+64}{10}
Since -\frac{125}{10} and \frac{64}{10} have the same denominator, add them by adding their numerators.
-\frac{61}{10}
Add -125 and 64 to get -61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}