Evaluate
\frac{23}{9}\approx 2.555555556
Factor
\frac{23}{3 ^ {2}} = 2\frac{5}{9} = 2.5555555555555554
Share
Copied to clipboard
-\frac{99+4}{9}-\frac{-3.6}{\frac{9}{35}}
Multiply 11 and 9 to get 99.
-\frac{103}{9}-\frac{-3.6}{\frac{9}{35}}
Add 99 and 4 to get 103.
-\frac{103}{9}-\left(-3.6\times \frac{35}{9}\right)
Divide -3.6 by \frac{9}{35} by multiplying -3.6 by the reciprocal of \frac{9}{35}.
-\frac{103}{9}-\left(-\frac{18}{5}\times \frac{35}{9}\right)
Convert decimal number -3.6 to fraction -\frac{36}{10}. Reduce the fraction -\frac{36}{10} to lowest terms by extracting and canceling out 2.
-\frac{103}{9}-\frac{-18\times 35}{5\times 9}
Multiply -\frac{18}{5} times \frac{35}{9} by multiplying numerator times numerator and denominator times denominator.
-\frac{103}{9}-\frac{-630}{45}
Do the multiplications in the fraction \frac{-18\times 35}{5\times 9}.
-\frac{103}{9}-\left(-14\right)
Divide -630 by 45 to get -14.
-\frac{103}{9}+14
The opposite of -14 is 14.
-\frac{103}{9}+\frac{126}{9}
Convert 14 to fraction \frac{126}{9}.
\frac{-103+126}{9}
Since -\frac{103}{9} and \frac{126}{9} have the same denominator, add them by adding their numerators.
\frac{23}{9}
Add -103 and 126 to get 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}