Evaluate
98+71i
Real Part
98
Share
Copied to clipboard
-\left(-8\right)-9i-10i\left(-8\right)-10\times 9i^{2}
Multiply complex numbers -1-10i and -8+9i like you multiply binomials.
-\left(-8\right)-9i-10i\left(-8\right)-10\times 9\left(-1\right)
By definition, i^{2} is -1.
8-9i+80i+90
Do the multiplications.
8+90+\left(-9+80\right)i
Combine the real and imaginary parts.
98+71i
Do the additions.
Re(-\left(-8\right)-9i-10i\left(-8\right)-10\times 9i^{2})
Multiply complex numbers -1-10i and -8+9i like you multiply binomials.
Re(-\left(-8\right)-9i-10i\left(-8\right)-10\times 9\left(-1\right))
By definition, i^{2} is -1.
Re(8-9i+80i+90)
Do the multiplications in -\left(-8\right)-9i-10i\left(-8\right)-10\times 9\left(-1\right).
Re(8+90+\left(-9+80\right)i)
Combine the real and imaginary parts in 8-9i+80i+90.
Re(98+71i)
Do the additions in 8+90+\left(-9+80\right)i.
98
The real part of 98+71i is 98.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}