Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
1-\left(1-0.5\right)\times \frac{1}{3}\left(2-\left(-2\right)^{2}\right)
Calculate -1 to the power of 4 and get 1.
1-0.5\times \frac{1}{3}\left(2-\left(-2\right)^{2}\right)
Subtract 0.5 from 1 to get 0.5.
1-\frac{1}{2}\times \frac{1}{3}\left(2-\left(-2\right)^{2}\right)
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
1-\frac{1\times 1}{2\times 3}\left(2-\left(-2\right)^{2}\right)
Multiply \frac{1}{2} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
1-\frac{1}{6}\left(2-\left(-2\right)^{2}\right)
Do the multiplications in the fraction \frac{1\times 1}{2\times 3}.
1-\frac{1}{6}\left(2-4\right)
Calculate -2 to the power of 2 and get 4.
1-\frac{1}{6}\left(-2\right)
Subtract 4 from 2 to get -2.
1-\frac{-2}{6}
Multiply \frac{1}{6} and -2 to get \frac{-2}{6}.
1-\left(-\frac{1}{3}\right)
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
1+\frac{1}{3}
The opposite of -\frac{1}{3} is \frac{1}{3}.
\frac{3}{3}+\frac{1}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{3+1}{3}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{4}{3}
Add 3 and 1 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}