Evaluate
-9+19i
Real Part
-9
Share
Copied to clipboard
-4-i+5i\times 4+5i^{2}
Multiply complex numbers -1+5i and 4+i like you multiply binomials.
-4-i+5i\times 4+5\left(-1\right)
By definition, i^{2} is -1.
-4-i+20i-5
Do the multiplications.
-4-5+\left(-1+20\right)i
Combine the real and imaginary parts.
-9+19i
Do the additions.
Re(-4-i+5i\times 4+5i^{2})
Multiply complex numbers -1+5i and 4+i like you multiply binomials.
Re(-4-i+5i\times 4+5\left(-1\right))
By definition, i^{2} is -1.
Re(-4-i+20i-5)
Do the multiplications in -4-i+5i\times 4+5\left(-1\right).
Re(-4-5+\left(-1+20\right)i)
Combine the real and imaginary parts in -4-i+20i-5.
Re(-9+19i)
Do the additions in -4-5+\left(-1+20\right)i.
-9
The real part of -9+19i is -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}