Evaluate
-1
Factor
-1
Share
Copied to clipboard
-\frac{2}{2}+\frac{1}{2}-\left(-\frac{1}{6}+\frac{2}{3}\right)
Convert -1 to fraction -\frac{2}{2}.
\frac{-2+1}{2}-\left(-\frac{1}{6}+\frac{2}{3}\right)
Since -\frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
-\frac{1}{2}-\left(-\frac{1}{6}+\frac{2}{3}\right)
Add -2 and 1 to get -1.
-\frac{1}{2}-\left(-\frac{1}{6}+\frac{4}{6}\right)
Least common multiple of 6 and 3 is 6. Convert -\frac{1}{6} and \frac{2}{3} to fractions with denominator 6.
-\frac{1}{2}-\frac{-1+4}{6}
Since -\frac{1}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
-\frac{1}{2}-\frac{3}{6}
Add -1 and 4 to get 3.
-\frac{1}{2}-\frac{1}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{-1-1}{2}
Since -\frac{1}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-2}{2}
Subtract 1 from -1 to get -2.
-1
Divide -2 by 2 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}