Solve for y
y=176
y=446
Graph
Share
Copied to clipboard
\left(0-0\times 1\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Multiply 0 and 1 to get 0.
\left(0-0\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Multiply 0 and 1 to get 0.
0^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Subtracting 0 from itself leaves 0.
0+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Calculate 0 to the power of 2 and get 0.
0+\left(200-y-\left(-111\right)\right)^{2}=18225
Add -115 and 4 to get -111.
0+\left(200-y+111\right)^{2}=18225
The opposite of -111 is 111.
0+y^{2}-622y+96721=18225
Square 200-y+111.
96721+y^{2}-622y=18225
Add 0 and 96721 to get 96721.
96721+y^{2}-622y-18225=0
Subtract 18225 from both sides.
78496+y^{2}-622y=0
Subtract 18225 from 96721 to get 78496.
y^{2}-622y+78496=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-622\right)±\sqrt{\left(-622\right)^{2}-4\times 78496}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -622 for b, and 78496 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-622\right)±\sqrt{386884-4\times 78496}}{2}
Square -622.
y=\frac{-\left(-622\right)±\sqrt{386884-313984}}{2}
Multiply -4 times 78496.
y=\frac{-\left(-622\right)±\sqrt{72900}}{2}
Add 386884 to -313984.
y=\frac{-\left(-622\right)±270}{2}
Take the square root of 72900.
y=\frac{622±270}{2}
The opposite of -622 is 622.
y=\frac{892}{2}
Now solve the equation y=\frac{622±270}{2} when ± is plus. Add 622 to 270.
y=446
Divide 892 by 2.
y=\frac{352}{2}
Now solve the equation y=\frac{622±270}{2} when ± is minus. Subtract 270 from 622.
y=176
Divide 352 by 2.
y=446 y=176
The equation is now solved.
\left(0-0\times 1\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Multiply 0 and 1 to get 0.
\left(0-0\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Multiply 0 and 1 to get 0.
0^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Subtracting 0 from itself leaves 0.
0+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Calculate 0 to the power of 2 and get 0.
0+\left(200-y-\left(-111\right)\right)^{2}=18225
Add -115 and 4 to get -111.
0+\left(200-y+111\right)^{2}=18225
The opposite of -111 is 111.
0+y^{2}-622y+96721=18225
Square 200-y+111.
96721+y^{2}-622y=18225
Add 0 and 96721 to get 96721.
y^{2}-622y=18225-96721
Subtract 96721 from both sides.
y^{2}-622y=-78496
Subtract 96721 from 18225 to get -78496.
y^{2}-622y+\left(-311\right)^{2}=-78496+\left(-311\right)^{2}
Divide -622, the coefficient of the x term, by 2 to get -311. Then add the square of -311 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-622y+96721=-78496+96721
Square -311.
y^{2}-622y+96721=18225
Add -78496 to 96721.
\left(y-311\right)^{2}=18225
Factor y^{2}-622y+96721. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-311\right)^{2}}=\sqrt{18225}
Take the square root of both sides of the equation.
y-311=135 y-311=-135
Simplify.
y=446 y=176
Add 311 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}