Solve for x (complex solution)
x=45+i\sqrt{293}\approx 45+17.117242769i
x=-i\sqrt{293}+45\approx 45-17.117242769i
Graph
Share
Copied to clipboard
45x-0.5x^{2}+5600=6759
Use the distributive property to multiply -0.5x+80 by 70+x and combine like terms.
45x-0.5x^{2}+5600-6759=0
Subtract 6759 from both sides.
45x-0.5x^{2}-1159=0
Subtract 6759 from 5600 to get -1159.
-0.5x^{2}+45x-1159=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-45±\sqrt{45^{2}-4\left(-0.5\right)\left(-1159\right)}}{2\left(-0.5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.5 for a, 45 for b, and -1159 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-0.5\right)\left(-1159\right)}}{2\left(-0.5\right)}
Square 45.
x=\frac{-45±\sqrt{2025+2\left(-1159\right)}}{2\left(-0.5\right)}
Multiply -4 times -0.5.
x=\frac{-45±\sqrt{2025-2318}}{2\left(-0.5\right)}
Multiply 2 times -1159.
x=\frac{-45±\sqrt{-293}}{2\left(-0.5\right)}
Add 2025 to -2318.
x=\frac{-45±\sqrt{293}i}{2\left(-0.5\right)}
Take the square root of -293.
x=\frac{-45±\sqrt{293}i}{-1}
Multiply 2 times -0.5.
x=\frac{-45+\sqrt{293}i}{-1}
Now solve the equation x=\frac{-45±\sqrt{293}i}{-1} when ± is plus. Add -45 to i\sqrt{293}.
x=-\sqrt{293}i+45
Divide -45+i\sqrt{293} by -1.
x=\frac{-\sqrt{293}i-45}{-1}
Now solve the equation x=\frac{-45±\sqrt{293}i}{-1} when ± is minus. Subtract i\sqrt{293} from -45.
x=45+\sqrt{293}i
Divide -45-i\sqrt{293} by -1.
x=-\sqrt{293}i+45 x=45+\sqrt{293}i
The equation is now solved.
45x-0.5x^{2}+5600=6759
Use the distributive property to multiply -0.5x+80 by 70+x and combine like terms.
45x-0.5x^{2}=6759-5600
Subtract 5600 from both sides.
45x-0.5x^{2}=1159
Subtract 5600 from 6759 to get 1159.
-0.5x^{2}+45x=1159
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.5x^{2}+45x}{-0.5}=\frac{1159}{-0.5}
Multiply both sides by -2.
x^{2}+\frac{45}{-0.5}x=\frac{1159}{-0.5}
Dividing by -0.5 undoes the multiplication by -0.5.
x^{2}-90x=\frac{1159}{-0.5}
Divide 45 by -0.5 by multiplying 45 by the reciprocal of -0.5.
x^{2}-90x=-2318
Divide 1159 by -0.5 by multiplying 1159 by the reciprocal of -0.5.
x^{2}-90x+\left(-45\right)^{2}=-2318+\left(-45\right)^{2}
Divide -90, the coefficient of the x term, by 2 to get -45. Then add the square of -45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-90x+2025=-2318+2025
Square -45.
x^{2}-90x+2025=-293
Add -2318 to 2025.
\left(x-45\right)^{2}=-293
Factor x^{2}-90x+2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-45\right)^{2}}=\sqrt{-293}
Take the square root of both sides of the equation.
x-45=\sqrt{293}i x-45=-\sqrt{293}i
Simplify.
x=45+\sqrt{293}i x=-\sqrt{293}i+45
Add 45 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}