Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-0.2\right)^{2}+\left(2-y-\left(-11.5+4\right)\right)^{2}=182.25
Subtract 0.1 from -0.1 to get -0.2.
0.04+\left(2-y-\left(-11.5+4\right)\right)^{2}=182.25
Calculate -0.2 to the power of 2 and get 0.04.
0.04+\left(2-y-\left(-7.5\right)\right)^{2}=182.25
Add -11.5 and 4 to get -7.5.
0.04+\left(2-y+7.5\right)^{2}=182.25
The opposite of -7.5 is 7.5.
0.04+y^{2}-19y+90.25=182.25
Square 2-y+7.5.
90.29+y^{2}-19y=182.25
Add 0.04 and 90.25 to get 90.29.
90.29+y^{2}-19y-182.25=0
Subtract 182.25 from both sides.
-91.96+y^{2}-19y=0
Subtract 182.25 from 90.29 to get -91.96.
y^{2}-19y-91.96=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\left(-91.96\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -19 for b, and -91.96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-19\right)±\sqrt{361-4\left(-91.96\right)}}{2}
Square -19.
y=\frac{-\left(-19\right)±\sqrt{361+367.84}}{2}
Multiply -4 times -91.96.
y=\frac{-\left(-19\right)±\sqrt{728.84}}{2}
Add 361 to 367.84.
y=\frac{-\left(-19\right)±\frac{\sqrt{18221}}{5}}{2}
Take the square root of 728.84.
y=\frac{19±\frac{\sqrt{18221}}{5}}{2}
The opposite of -19 is 19.
y=\frac{\frac{\sqrt{18221}}{5}+19}{2}
Now solve the equation y=\frac{19±\frac{\sqrt{18221}}{5}}{2} when ± is plus. Add 19 to \frac{\sqrt{18221}}{5}.
y=\frac{\sqrt{18221}}{10}+\frac{19}{2}
Divide 19+\frac{\sqrt{18221}}{5} by 2.
y=\frac{-\frac{\sqrt{18221}}{5}+19}{2}
Now solve the equation y=\frac{19±\frac{\sqrt{18221}}{5}}{2} when ± is minus. Subtract \frac{\sqrt{18221}}{5} from 19.
y=-\frac{\sqrt{18221}}{10}+\frac{19}{2}
Divide 19-\frac{\sqrt{18221}}{5} by 2.
y=\frac{\sqrt{18221}}{10}+\frac{19}{2} y=-\frac{\sqrt{18221}}{10}+\frac{19}{2}
The equation is now solved.
\left(-0.2\right)^{2}+\left(2-y-\left(-11.5+4\right)\right)^{2}=182.25
Subtract 0.1 from -0.1 to get -0.2.
0.04+\left(2-y-\left(-11.5+4\right)\right)^{2}=182.25
Calculate -0.2 to the power of 2 and get 0.04.
0.04+\left(2-y-\left(-7.5\right)\right)^{2}=182.25
Add -11.5 and 4 to get -7.5.
0.04+\left(2-y+7.5\right)^{2}=182.25
The opposite of -7.5 is 7.5.
0.04+y^{2}-19y+90.25=182.25
Square 2-y+7.5.
90.29+y^{2}-19y=182.25
Add 0.04 and 90.25 to get 90.29.
y^{2}-19y=182.25-90.29
Subtract 90.29 from both sides.
y^{2}-19y=91.96
Subtract 90.29 from 182.25 to get 91.96.
y^{2}-19y+\left(-\frac{19}{2}\right)^{2}=91.96+\left(-\frac{19}{2}\right)^{2}
Divide -19, the coefficient of the x term, by 2 to get -\frac{19}{2}. Then add the square of -\frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-19y+\frac{361}{4}=91.96+\frac{361}{4}
Square -\frac{19}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-19y+\frac{361}{4}=\frac{18221}{100}
Add 91.96 to \frac{361}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{19}{2}\right)^{2}=\frac{18221}{100}
Factor y^{2}-19y+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{19}{2}\right)^{2}}=\sqrt{\frac{18221}{100}}
Take the square root of both sides of the equation.
y-\frac{19}{2}=\frac{\sqrt{18221}}{10} y-\frac{19}{2}=-\frac{\sqrt{18221}}{10}
Simplify.
y=\frac{\sqrt{18221}}{10}+\frac{19}{2} y=-\frac{\sqrt{18221}}{10}+\frac{19}{2}
Add \frac{19}{2} to both sides of the equation.