Solve for y
y=-\frac{\sqrt{18221}}{10}+9.5\approx -3.998518437
y=\frac{\sqrt{18221}}{10}+9.5\approx 22.998518437
Graph
Share
Copied to clipboard
\left(-0.2\right)^{2}+\left(2-y-\left(-11.5+4\right)\right)^{2}=182.25
Subtract 0.1 from -0.1 to get -0.2.
0.04+\left(2-y-\left(-11.5+4\right)\right)^{2}=182.25
Calculate -0.2 to the power of 2 and get 0.04.
0.04+\left(2-y-\left(-7.5\right)\right)^{2}=182.25
Add -11.5 and 4 to get -7.5.
0.04+\left(2-y+7.5\right)^{2}=182.25
The opposite of -7.5 is 7.5.
0.04+y^{2}-19y+90.25=182.25
Square 2-y+7.5.
90.29+y^{2}-19y=182.25
Add 0.04 and 90.25 to get 90.29.
90.29+y^{2}-19y-182.25=0
Subtract 182.25 from both sides.
-91.96+y^{2}-19y=0
Subtract 182.25 from 90.29 to get -91.96.
y^{2}-19y-91.96=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\left(-91.96\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -19 for b, and -91.96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-19\right)±\sqrt{361-4\left(-91.96\right)}}{2}
Square -19.
y=\frac{-\left(-19\right)±\sqrt{361+367.84}}{2}
Multiply -4 times -91.96.
y=\frac{-\left(-19\right)±\sqrt{728.84}}{2}
Add 361 to 367.84.
y=\frac{-\left(-19\right)±\frac{\sqrt{18221}}{5}}{2}
Take the square root of 728.84.
y=\frac{19±\frac{\sqrt{18221}}{5}}{2}
The opposite of -19 is 19.
y=\frac{\frac{\sqrt{18221}}{5}+19}{2}
Now solve the equation y=\frac{19±\frac{\sqrt{18221}}{5}}{2} when ± is plus. Add 19 to \frac{\sqrt{18221}}{5}.
y=\frac{\sqrt{18221}}{10}+\frac{19}{2}
Divide 19+\frac{\sqrt{18221}}{5} by 2.
y=\frac{-\frac{\sqrt{18221}}{5}+19}{2}
Now solve the equation y=\frac{19±\frac{\sqrt{18221}}{5}}{2} when ± is minus. Subtract \frac{\sqrt{18221}}{5} from 19.
y=-\frac{\sqrt{18221}}{10}+\frac{19}{2}
Divide 19-\frac{\sqrt{18221}}{5} by 2.
y=\frac{\sqrt{18221}}{10}+\frac{19}{2} y=-\frac{\sqrt{18221}}{10}+\frac{19}{2}
The equation is now solved.
\left(-0.2\right)^{2}+\left(2-y-\left(-11.5+4\right)\right)^{2}=182.25
Subtract 0.1 from -0.1 to get -0.2.
0.04+\left(2-y-\left(-11.5+4\right)\right)^{2}=182.25
Calculate -0.2 to the power of 2 and get 0.04.
0.04+\left(2-y-\left(-7.5\right)\right)^{2}=182.25
Add -11.5 and 4 to get -7.5.
0.04+\left(2-y+7.5\right)^{2}=182.25
The opposite of -7.5 is 7.5.
0.04+y^{2}-19y+90.25=182.25
Square 2-y+7.5.
90.29+y^{2}-19y=182.25
Add 0.04 and 90.25 to get 90.29.
y^{2}-19y=182.25-90.29
Subtract 90.29 from both sides.
y^{2}-19y=91.96
Subtract 90.29 from 182.25 to get 91.96.
y^{2}-19y+\left(-\frac{19}{2}\right)^{2}=91.96+\left(-\frac{19}{2}\right)^{2}
Divide -19, the coefficient of the x term, by 2 to get -\frac{19}{2}. Then add the square of -\frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-19y+\frac{361}{4}=91.96+\frac{361}{4}
Square -\frac{19}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-19y+\frac{361}{4}=\frac{18221}{100}
Add 91.96 to \frac{361}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{19}{2}\right)^{2}=\frac{18221}{100}
Factor y^{2}-19y+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{19}{2}\right)^{2}}=\sqrt{\frac{18221}{100}}
Take the square root of both sides of the equation.
y-\frac{19}{2}=\frac{\sqrt{18221}}{10} y-\frac{19}{2}=-\frac{\sqrt{18221}}{10}
Simplify.
y=\frac{\sqrt{18221}}{10}+\frac{19}{2} y=-\frac{\sqrt{18221}}{10}+\frac{19}{2}
Add \frac{19}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}