Evaluate
-\frac{\sqrt{6}}{6}+6\approx 5.59175171
Factor
\frac{36 - \sqrt{6}}{6} = 5.591751709536137
Share
Copied to clipboard
\left(\sqrt{5}\right)^{2}+\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)-\sqrt{\frac{2}{3}}\sqrt{1}\times \frac{1}{2}
Calculate -\sqrt{5} to the power of 2 and get \left(\sqrt{5}\right)^{2}.
\left(\sqrt{5}\right)^{2}+\left(\sqrt{2}\right)^{2}-1-\sqrt{\frac{2}{3}}\sqrt{1}\times \frac{1}{2}
Consider \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\left(\sqrt{5}\right)^{2}+2-1-\sqrt{\frac{2}{3}}\sqrt{1}\times \frac{1}{2}
The square of \sqrt{2} is 2.
\left(\sqrt{5}\right)^{2}+1-\sqrt{\frac{2}{3}}\sqrt{1}\times \frac{1}{2}
Subtract 1 from 2 to get 1.
\left(\sqrt{5}\right)^{2}+1-\frac{\sqrt{2}}{\sqrt{3}}\sqrt{1}\times \frac{1}{2}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\left(\sqrt{5}\right)^{2}+1-\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{1}\times \frac{1}{2}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\sqrt{5}\right)^{2}+1-\frac{\sqrt{2}\sqrt{3}}{3}\sqrt{1}\times \frac{1}{2}
The square of \sqrt{3} is 3.
\left(\sqrt{5}\right)^{2}+1-\frac{\sqrt{6}}{3}\sqrt{1}\times \frac{1}{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(\sqrt{5}\right)^{2}+1-\frac{\sqrt{6}}{3}\times 1\times \frac{1}{2}
Calculate the square root of 1 and get 1.
\left(\sqrt{5}\right)^{2}+1-\frac{\sqrt{6}}{3}\times \frac{1}{2}
Multiply 1 and \frac{1}{2} to get \frac{1}{2}.
\left(\sqrt{5}\right)^{2}+1-\frac{\sqrt{6}}{3\times 2}
Multiply \frac{\sqrt{6}}{3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\left(\sqrt{5}\right)^{2}+1-\frac{\sqrt{6}}{6}
Multiply 3 and 2 to get 6.
5+1-\frac{\sqrt{6}}{6}
The square of \sqrt{5} is 5.
6-\frac{\sqrt{6}}{6}
Add 5 and 1 to get 6.
\frac{6\times 6}{6}-\frac{\sqrt{6}}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{6}{6}.
\frac{6\times 6-\sqrt{6}}{6}
Since \frac{6\times 6}{6} and \frac{\sqrt{6}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{36-\sqrt{6}}{6}
Do the multiplications in 6\times 6-\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}