Solve for n
n=-8i
n=8i
Share
Copied to clipboard
\left(-\frac{n}{8}\right)\left(n+n\right)=16
Multiply both sides of the equation by 8.
\left(-\frac{n}{8}\right)\times 2n=16
Combine n and n to get 2n.
\frac{n}{-4}n=16
Cancel out 8, the greatest common factor in 2 and 8.
\frac{nn}{-4}=16
Express \frac{n}{-4}n as a single fraction.
\frac{n^{2}}{-4}=16
Multiply n and n to get n^{2}.
n^{2}=16\left(-4\right)
Multiply both sides by -4.
n^{2}=-64
Multiply 16 and -4 to get -64.
n=8i n=-8i
The equation is now solved.
\left(-\frac{n}{8}\right)\left(n+n\right)=16
Multiply both sides of the equation by 8.
\left(-\frac{n}{8}\right)\times 2n=16
Combine n and n to get 2n.
\frac{n}{-4}n=16
Cancel out 8, the greatest common factor in 2 and 8.
\frac{nn}{-4}=16
Express \frac{n}{-4}n as a single fraction.
\frac{n^{2}}{-4}=16
Multiply n and n to get n^{2}.
\frac{n^{2}}{-4}-16=0
Subtract 16 from both sides.
n^{2}+64=0
Multiply both sides of the equation by -4.
n=\frac{0±\sqrt{0^{2}-4\times 64}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 64}}{2}
Square 0.
n=\frac{0±\sqrt{-256}}{2}
Multiply -4 times 64.
n=\frac{0±16i}{2}
Take the square root of -256.
n=8i
Now solve the equation n=\frac{0±16i}{2} when ± is plus.
n=-8i
Now solve the equation n=\frac{0±16i}{2} when ± is minus.
n=8i n=-8i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}