Evaluate
-\left(a+1\right)
Expand
-\left(a+1\right)
Share
Copied to clipboard
\left(-\frac{a+1}{2}\right)\times 9+2\times \frac{a+1}{2}\times 3+\frac{a+1}{2}
Calculate 3 to the power of 2 and get 9.
\frac{-\left(a+1\right)\times 9}{2}+2\times \frac{a+1}{2}\times 3+\frac{a+1}{2}
Express \left(-\frac{a+1}{2}\right)\times 9 as a single fraction.
\frac{-\left(a+1\right)\times 9}{2}+6\times \frac{a+1}{2}+\frac{a+1}{2}
Multiply 2 and 3 to get 6.
\frac{-\left(a+1\right)\times 9}{2}+3\left(a+1\right)+\frac{a+1}{2}
Cancel out 2, the greatest common factor in 6 and 2.
\frac{-\left(a+1\right)\times 9}{2}+3a+3+\frac{a+1}{2}
Use the distributive property to multiply 3 by a+1.
\frac{-\left(a+1\right)\times 9}{2}+\frac{2\left(3a+3\right)}{2}+\frac{a+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3a+3 times \frac{2}{2}.
\frac{-\left(a+1\right)\times 9+2\left(3a+3\right)}{2}+\frac{a+1}{2}
Since \frac{-\left(a+1\right)\times 9}{2} and \frac{2\left(3a+3\right)}{2} have the same denominator, add them by adding their numerators.
\frac{-9a-9+6a+6}{2}+\frac{a+1}{2}
Do the multiplications in -\left(a+1\right)\times 9+2\left(3a+3\right).
\frac{-3a-3}{2}+\frac{a+1}{2}
Combine like terms in -9a-9+6a+6.
\frac{-3a-3+a+1}{2}
Since \frac{-3a-3}{2} and \frac{a+1}{2} have the same denominator, add them by adding their numerators.
\frac{-2a-2}{2}
Combine like terms in -3a-3+a+1.
-1-a
Divide each term of -2a-2 by 2 to get -1-a.
\left(-\frac{a+1}{2}\right)\times 9+2\times \frac{a+1}{2}\times 3+\frac{a+1}{2}
Calculate 3 to the power of 2 and get 9.
\frac{-\left(a+1\right)\times 9}{2}+2\times \frac{a+1}{2}\times 3+\frac{a+1}{2}
Express \left(-\frac{a+1}{2}\right)\times 9 as a single fraction.
\frac{-\left(a+1\right)\times 9}{2}+6\times \frac{a+1}{2}+\frac{a+1}{2}
Multiply 2 and 3 to get 6.
\frac{-\left(a+1\right)\times 9}{2}+3\left(a+1\right)+\frac{a+1}{2}
Cancel out 2, the greatest common factor in 6 and 2.
\frac{-\left(a+1\right)\times 9}{2}+3a+3+\frac{a+1}{2}
Use the distributive property to multiply 3 by a+1.
\frac{-\left(a+1\right)\times 9}{2}+\frac{2\left(3a+3\right)}{2}+\frac{a+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3a+3 times \frac{2}{2}.
\frac{-\left(a+1\right)\times 9+2\left(3a+3\right)}{2}+\frac{a+1}{2}
Since \frac{-\left(a+1\right)\times 9}{2} and \frac{2\left(3a+3\right)}{2} have the same denominator, add them by adding their numerators.
\frac{-9a-9+6a+6}{2}+\frac{a+1}{2}
Do the multiplications in -\left(a+1\right)\times 9+2\left(3a+3\right).
\frac{-3a-3}{2}+\frac{a+1}{2}
Combine like terms in -9a-9+6a+6.
\frac{-3a-3+a+1}{2}
Since \frac{-3a-3}{2} and \frac{a+1}{2} have the same denominator, add them by adding their numerators.
\frac{-2a-2}{2}
Combine like terms in -3a-3+a+1.
-1-a
Divide each term of -2a-2 by 2 to get -1-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}