Evaluate
-\frac{98}{15}\approx -6.533333333
Factor
-\frac{98}{15} = -6\frac{8}{15} = -6.533333333333333
Share
Copied to clipboard
\left(-\frac{8}{9}-\frac{6}{9}\right)\left(4+\frac{2}{10}\right)
Least common multiple of 9 and 3 is 9. Convert -\frac{8}{9} and \frac{2}{3} to fractions with denominator 9.
\frac{-8-6}{9}\left(4+\frac{2}{10}\right)
Since -\frac{8}{9} and \frac{6}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{14}{9}\left(4+\frac{2}{10}\right)
Subtract 6 from -8 to get -14.
-\frac{14}{9}\left(4+\frac{1}{5}\right)
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
-\frac{14}{9}\left(\frac{20}{5}+\frac{1}{5}\right)
Convert 4 to fraction \frac{20}{5}.
-\frac{14}{9}\times \frac{20+1}{5}
Since \frac{20}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
-\frac{14}{9}\times \frac{21}{5}
Add 20 and 1 to get 21.
\frac{-14\times 21}{9\times 5}
Multiply -\frac{14}{9} times \frac{21}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-294}{45}
Do the multiplications in the fraction \frac{-14\times 21}{9\times 5}.
-\frac{98}{15}
Reduce the fraction \frac{-294}{45} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}