Evaluate
-\frac{5}{24}\approx -0.208333333
Factor
-\frac{5}{24} = -0.20833333333333334
Share
Copied to clipboard
\frac{\left(-\frac{2}{3}\right)^{3}}{\left(-\frac{85}{51}\right)^{2}}\times \left(\frac{65}{52}\right)^{3}
Reduce the fraction \frac{62}{93} to lowest terms by extracting and canceling out 31.
\frac{-\frac{8}{27}}{\left(-\frac{85}{51}\right)^{2}}\times \left(\frac{65}{52}\right)^{3}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
\frac{-\frac{8}{27}}{\left(-\frac{5}{3}\right)^{2}}\times \left(\frac{65}{52}\right)^{3}
Reduce the fraction \frac{85}{51} to lowest terms by extracting and canceling out 17.
\frac{-\frac{8}{27}}{\frac{25}{9}}\times \left(\frac{65}{52}\right)^{3}
Calculate -\frac{5}{3} to the power of 2 and get \frac{25}{9}.
-\frac{8}{27}\times \frac{9}{25}\times \left(\frac{65}{52}\right)^{3}
Divide -\frac{8}{27} by \frac{25}{9} by multiplying -\frac{8}{27} by the reciprocal of \frac{25}{9}.
-\frac{8}{75}\times \left(\frac{65}{52}\right)^{3}
Multiply -\frac{8}{27} and \frac{9}{25} to get -\frac{8}{75}.
-\frac{8}{75}\times \left(\frac{5}{4}\right)^{3}
Reduce the fraction \frac{65}{52} to lowest terms by extracting and canceling out 13.
-\frac{8}{75}\times \frac{125}{64}
Calculate \frac{5}{4} to the power of 3 and get \frac{125}{64}.
-\frac{5}{24}
Multiply -\frac{8}{75} and \frac{125}{64} to get -\frac{5}{24}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}