Evaluate
\frac{7}{10}=0.7
Factor
\frac{7}{2 \cdot 5} = 0.7
Share
Copied to clipboard
\frac{\frac{-6+9}{8}}{\frac{5}{8}}+\frac{\frac{2}{7}-\frac{5}{14}}{\frac{5}{28}}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Since -\frac{6}{8} and \frac{9}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{8}}{\frac{5}{8}}+\frac{\frac{2}{7}-\frac{5}{14}}{\frac{5}{28}}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Add -6 and 9 to get 3.
\frac{3}{8}\times \frac{8}{5}+\frac{\frac{2}{7}-\frac{5}{14}}{\frac{5}{28}}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Divide \frac{3}{8} by \frac{5}{8} by multiplying \frac{3}{8} by the reciprocal of \frac{5}{8}.
\frac{3\times 8}{8\times 5}+\frac{\frac{2}{7}-\frac{5}{14}}{\frac{5}{28}}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Multiply \frac{3}{8} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{5}+\frac{\frac{2}{7}-\frac{5}{14}}{\frac{5}{28}}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Cancel out 8 in both numerator and denominator.
\frac{3}{5}+\frac{\frac{4}{14}-\frac{5}{14}}{\frac{5}{28}}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Least common multiple of 7 and 14 is 14. Convert \frac{2}{7} and \frac{5}{14} to fractions with denominator 14.
\frac{3}{5}+\frac{\frac{4-5}{14}}{\frac{5}{28}}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Since \frac{4}{14} and \frac{5}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{5}+\frac{-\frac{1}{14}}{\frac{5}{28}}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Subtract 5 from 4 to get -1.
\frac{3}{5}-\frac{1}{14}\times \frac{28}{5}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Divide -\frac{1}{14} by \frac{5}{28} by multiplying -\frac{1}{14} by the reciprocal of \frac{5}{28}.
\frac{3}{5}+\frac{-28}{14\times 5}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Multiply -\frac{1}{14} times \frac{28}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{5}+\frac{-28}{70}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Do the multiplications in the fraction \frac{-28}{14\times 5}.
\frac{3}{5}-\frac{2}{5}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Reduce the fraction \frac{-28}{70} to lowest terms by extracting and canceling out 14.
\frac{3-2}{5}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Since \frac{3}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}-\frac{\frac{5}{6}-\frac{1}{12}}{-\frac{3}{2}}
Subtract 2 from 3 to get 1.
\frac{1}{5}-\frac{\frac{10}{12}-\frac{1}{12}}{-\frac{3}{2}}
Least common multiple of 6 and 12 is 12. Convert \frac{5}{6} and \frac{1}{12} to fractions with denominator 12.
\frac{1}{5}-\frac{\frac{10-1}{12}}{-\frac{3}{2}}
Since \frac{10}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}-\frac{\frac{9}{12}}{-\frac{3}{2}}
Subtract 1 from 10 to get 9.
\frac{1}{5}-\frac{\frac{3}{4}}{-\frac{3}{2}}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
\frac{1}{5}-\frac{3}{4}\left(-\frac{2}{3}\right)
Divide \frac{3}{4} by -\frac{3}{2} by multiplying \frac{3}{4} by the reciprocal of -\frac{3}{2}.
\frac{1}{5}-\frac{3\left(-2\right)}{4\times 3}
Multiply \frac{3}{4} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}-\frac{-2}{4}
Cancel out 3 in both numerator and denominator.
\frac{1}{5}-\left(-\frac{1}{2}\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{5}+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{2}{10}+\frac{5}{10}
Least common multiple of 5 and 2 is 10. Convert \frac{1}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{2+5}{10}
Since \frac{2}{10} and \frac{5}{10} have the same denominator, add them by adding their numerators.
\frac{7}{10}
Add 2 and 5 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}