Evaluate
\frac{97b^{2}}{15}+\frac{2b}{3}+\frac{23}{35}
Expand
\frac{97b^{2}}{15}+\frac{2b}{3}+\frac{23}{35}
Share
Copied to clipboard
\frac{\frac{6}{245}\times 245b\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)}{\frac{6}{7}b}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Factor the expressions that are not already factored in \frac{-\frac{6}{49}b-\frac{12}{35}b^{2}+6b^{3}}{\frac{6}{7}b}.
\frac{\frac{6}{245}\times 245\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)}{\frac{6}{7}}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Cancel out b in both numerator and denominator.
\frac{6\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)}{\frac{6}{7}}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Multiply \frac{6}{245} and 245 to get 6.
7\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Divide 6\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right) by \frac{6}{7} to get 7\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right).
\left(7b+\frac{1}{5}\sqrt{26}-\frac{1}{5}\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Use the distributive property to multiply 7 by b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right).
\left(7b+\frac{1}{5}\sqrt{26}-\frac{1}{5}\right)\left(b-\frac{1}{35}\sqrt{26}-\frac{1}{35}\right)-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
To find the opposite of \frac{1}{35}\sqrt{26}+\frac{1}{35}, find the opposite of each term.
7b^{2}-\frac{2}{5}b-\frac{1}{175}\left(\sqrt{26}\right)^{2}+\frac{1}{175}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Use the distributive property to multiply 7b+\frac{1}{5}\sqrt{26}-\frac{1}{5} by b-\frac{1}{35}\sqrt{26}-\frac{1}{35} and combine like terms.
7b^{2}-\frac{2}{5}b-\frac{1}{175}\times 26+\frac{1}{175}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
The square of \sqrt{26} is 26.
7b^{2}-\frac{2}{5}b-\frac{26}{175}+\frac{1}{175}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Multiply -\frac{1}{175} and 26 to get -\frac{26}{175}.
7b^{2}-\frac{2}{5}b-\frac{1}{7}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Add -\frac{26}{175} and \frac{1}{175} to get -\frac{1}{7}.
7b^{2}-\frac{2}{5}b-\frac{1}{7}-\left(\frac{8}{15}b^{2}+\frac{4}{15}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Use the distributive property to multiply \frac{2}{3}b+1 by \frac{4}{5}b-\frac{4}{5} and combine like terms.
7b^{2}-\frac{2}{5}b-\frac{1}{7}-\frac{8}{15}b^{2}-\frac{4}{15}b+\frac{4}{5}+\frac{4}{5}b\left(1+\frac{2}{3}\right)
To find the opposite of \frac{8}{15}b^{2}+\frac{4}{15}b-\frac{4}{5}, find the opposite of each term.
\frac{97}{15}b^{2}-\frac{2}{5}b-\frac{1}{7}-\frac{4}{15}b+\frac{4}{5}+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Combine 7b^{2} and -\frac{8}{15}b^{2} to get \frac{97}{15}b^{2}.
\frac{97}{15}b^{2}-\frac{2}{3}b-\frac{1}{7}+\frac{4}{5}+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Combine -\frac{2}{5}b and -\frac{4}{15}b to get -\frac{2}{3}b.
\frac{97}{15}b^{2}-\frac{2}{3}b+\frac{23}{35}+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Add -\frac{1}{7} and \frac{4}{5} to get \frac{23}{35}.
\frac{97}{15}b^{2}-\frac{2}{3}b+\frac{23}{35}+\frac{4}{5}b\times \frac{5}{3}
Add 1 and \frac{2}{3} to get \frac{5}{3}.
\frac{97}{15}b^{2}-\frac{2}{3}b+\frac{23}{35}+\frac{4}{3}b
Multiply \frac{4}{5} and \frac{5}{3} to get \frac{4}{3}.
\frac{97}{15}b^{2}+\frac{2}{3}b+\frac{23}{35}
Combine -\frac{2}{3}b and \frac{4}{3}b to get \frac{2}{3}b.
\frac{\frac{6}{245}\times 245b\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)}{\frac{6}{7}b}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Factor the expressions that are not already factored in \frac{-\frac{6}{49}b-\frac{12}{35}b^{2}+6b^{3}}{\frac{6}{7}b}.
\frac{\frac{6}{245}\times 245\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)}{\frac{6}{7}}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Cancel out b in both numerator and denominator.
\frac{6\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)}{\frac{6}{7}}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Multiply \frac{6}{245} and 245 to get 6.
7\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Divide 6\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right) by \frac{6}{7} to get 7\left(b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right).
\left(7b+\frac{1}{5}\sqrt{26}-\frac{1}{5}\right)\left(b-\left(\frac{1}{35}\sqrt{26}+\frac{1}{35}\right)\right)-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Use the distributive property to multiply 7 by b-\left(-\frac{1}{35}\sqrt{26}+\frac{1}{35}\right).
\left(7b+\frac{1}{5}\sqrt{26}-\frac{1}{5}\right)\left(b-\frac{1}{35}\sqrt{26}-\frac{1}{35}\right)-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
To find the opposite of \frac{1}{35}\sqrt{26}+\frac{1}{35}, find the opposite of each term.
7b^{2}-\frac{2}{5}b-\frac{1}{175}\left(\sqrt{26}\right)^{2}+\frac{1}{175}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Use the distributive property to multiply 7b+\frac{1}{5}\sqrt{26}-\frac{1}{5} by b-\frac{1}{35}\sqrt{26}-\frac{1}{35} and combine like terms.
7b^{2}-\frac{2}{5}b-\frac{1}{175}\times 26+\frac{1}{175}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
The square of \sqrt{26} is 26.
7b^{2}-\frac{2}{5}b-\frac{26}{175}+\frac{1}{175}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Multiply -\frac{1}{175} and 26 to get -\frac{26}{175}.
7b^{2}-\frac{2}{5}b-\frac{1}{7}-\left(\frac{2}{3}b+1\right)\left(\frac{4}{5}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Add -\frac{26}{175} and \frac{1}{175} to get -\frac{1}{7}.
7b^{2}-\frac{2}{5}b-\frac{1}{7}-\left(\frac{8}{15}b^{2}+\frac{4}{15}b-\frac{4}{5}\right)+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Use the distributive property to multiply \frac{2}{3}b+1 by \frac{4}{5}b-\frac{4}{5} and combine like terms.
7b^{2}-\frac{2}{5}b-\frac{1}{7}-\frac{8}{15}b^{2}-\frac{4}{15}b+\frac{4}{5}+\frac{4}{5}b\left(1+\frac{2}{3}\right)
To find the opposite of \frac{8}{15}b^{2}+\frac{4}{15}b-\frac{4}{5}, find the opposite of each term.
\frac{97}{15}b^{2}-\frac{2}{5}b-\frac{1}{7}-\frac{4}{15}b+\frac{4}{5}+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Combine 7b^{2} and -\frac{8}{15}b^{2} to get \frac{97}{15}b^{2}.
\frac{97}{15}b^{2}-\frac{2}{3}b-\frac{1}{7}+\frac{4}{5}+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Combine -\frac{2}{5}b and -\frac{4}{15}b to get -\frac{2}{3}b.
\frac{97}{15}b^{2}-\frac{2}{3}b+\frac{23}{35}+\frac{4}{5}b\left(1+\frac{2}{3}\right)
Add -\frac{1}{7} and \frac{4}{5} to get \frac{23}{35}.
\frac{97}{15}b^{2}-\frac{2}{3}b+\frac{23}{35}+\frac{4}{5}b\times \frac{5}{3}
Add 1 and \frac{2}{3} to get \frac{5}{3}.
\frac{97}{15}b^{2}-\frac{2}{3}b+\frac{23}{35}+\frac{4}{3}b
Multiply \frac{4}{5} and \frac{5}{3} to get \frac{4}{3}.
\frac{97}{15}b^{2}+\frac{2}{3}b+\frac{23}{35}
Combine -\frac{2}{3}b and \frac{4}{3}b to get \frac{2}{3}b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}