Evaluate
\frac{2}{45}\approx 0.044444444
Factor
\frac{2}{3 ^ {2} \cdot 5} = 0.044444444444444446
Share
Copied to clipboard
\frac{\frac{-5\times 4}{6\times 15}-\frac{2}{15}}{-8}
Multiply -\frac{5}{6} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-20}{90}-\frac{2}{15}}{-8}
Do the multiplications in the fraction \frac{-5\times 4}{6\times 15}.
\frac{-\frac{2}{9}-\frac{2}{15}}{-8}
Reduce the fraction \frac{-20}{90} to lowest terms by extracting and canceling out 10.
\frac{-\frac{10}{45}-\frac{6}{45}}{-8}
Least common multiple of 9 and 15 is 45. Convert -\frac{2}{9} and \frac{2}{15} to fractions with denominator 45.
\frac{\frac{-10-6}{45}}{-8}
Since -\frac{10}{45} and \frac{6}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{16}{45}}{-8}
Subtract 6 from -10 to get -16.
\frac{-16}{45\left(-8\right)}
Express \frac{-\frac{16}{45}}{-8} as a single fraction.
\frac{-16}{-360}
Multiply 45 and -8 to get -360.
\frac{2}{45}
Reduce the fraction \frac{-16}{-360} to lowest terms by extracting and canceling out -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}