Solve for x
x=-3
Graph
Share
Copied to clipboard
-\frac{5}{3}x^{2}-10x-10=5
Multiply 6 and -\frac{5}{3} to get -10.
-\frac{5}{3}x^{2}-10x-10-5=0
Subtract 5 from both sides.
-\frac{5}{3}x^{2}-10x-15=0
Subtract 5 from -10 to get -15.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-\frac{5}{3}\right)\left(-15\right)}}{2\left(-\frac{5}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{5}{3} for a, -10 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-\frac{5}{3}\right)\left(-15\right)}}{2\left(-\frac{5}{3}\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+\frac{20}{3}\left(-15\right)}}{2\left(-\frac{5}{3}\right)}
Multiply -4 times -\frac{5}{3}.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2\left(-\frac{5}{3}\right)}
Multiply \frac{20}{3} times -15.
x=\frac{-\left(-10\right)±\sqrt{0}}{2\left(-\frac{5}{3}\right)}
Add 100 to -100.
x=-\frac{-10}{2\left(-\frac{5}{3}\right)}
Take the square root of 0.
x=\frac{10}{2\left(-\frac{5}{3}\right)}
The opposite of -10 is 10.
x=\frac{10}{-\frac{10}{3}}
Multiply 2 times -\frac{5}{3}.
x=-3
Divide 10 by -\frac{10}{3} by multiplying 10 by the reciprocal of -\frac{10}{3}.
-\frac{5}{3}x^{2}-10x-10=5
Multiply 6 and -\frac{5}{3} to get -10.
-\frac{5}{3}x^{2}-10x=5+10
Add 10 to both sides.
-\frac{5}{3}x^{2}-10x=15
Add 5 and 10 to get 15.
\frac{-\frac{5}{3}x^{2}-10x}{-\frac{5}{3}}=\frac{15}{-\frac{5}{3}}
Divide both sides of the equation by -\frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{10}{-\frac{5}{3}}\right)x=\frac{15}{-\frac{5}{3}}
Dividing by -\frac{5}{3} undoes the multiplication by -\frac{5}{3}.
x^{2}+6x=\frac{15}{-\frac{5}{3}}
Divide -10 by -\frac{5}{3} by multiplying -10 by the reciprocal of -\frac{5}{3}.
x^{2}+6x=-9
Divide 15 by -\frac{5}{3} by multiplying 15 by the reciprocal of -\frac{5}{3}.
x^{2}+6x+3^{2}=-9+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-9+9
Square 3.
x^{2}+6x+9=0
Add -9 to 9.
\left(x+3\right)^{2}=0
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+3=0 x+3=0
Simplify.
x=-3 x=-3
Subtract 3 from both sides of the equation.
x=-3
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}