Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

-\frac{5}{2}b\left(-b^{2}\right)-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}bb^{2}-\frac{1}{3}b^{2}\times \frac{3}{2}b-\frac{1}{2}b^{2}\times \frac{5}{2}b+b^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-\frac{5}{2}b\left(-b^{2}\right)-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}b^{3}-\frac{1}{3}b^{2}\times \frac{3}{2}b-\frac{1}{2}b^{2}\times \frac{5}{2}b+b^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-\frac{5}{2}b\left(-b^{2}\right)-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{2}\times \frac{5}{2}b+b^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-\frac{5}{2}b\left(-b^{2}\right)-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{5}{2}bb^{2}-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3}
Multiply -\frac{5}{2} and -1 to get \frac{5}{2}.
\frac{5}{2}b^{3}-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{5}{2}b^{3}-\frac{10}{3}b^{3}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3}
Multiply -\frac{4}{3} and \frac{5}{2} to get -\frac{10}{3}.
-\frac{5}{6}b^{3}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3}
Combine \frac{5}{2}b^{3} and -\frac{10}{3}b^{3} to get -\frac{5}{6}b^{3}.
\frac{2}{3}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3}
Combine -\frac{5}{6}b^{3} and \frac{3}{2}b^{3} to get \frac{2}{3}b^{3}.
\frac{2}{3}b^{3}-\frac{1}{2}b^{3}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3}
Multiply -\frac{1}{3} and \frac{3}{2} to get -\frac{1}{2}.
\frac{1}{6}b^{3}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3}
Combine \frac{2}{3}b^{3} and -\frac{1}{2}b^{3} to get \frac{1}{6}b^{3}.
\frac{1}{6}b^{3}-\frac{5}{4}b^{3}+b^{3}
Multiply -\frac{1}{2} and \frac{5}{2} to get -\frac{5}{4}.
-\frac{13}{12}b^{3}+b^{3}
Combine \frac{1}{6}b^{3} and -\frac{5}{4}b^{3} to get -\frac{13}{12}b^{3}.
-\frac{1}{12}b^{3}
Combine -\frac{13}{12}b^{3} and b^{3} to get -\frac{1}{12}b^{3}.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{5}{2}b\left(-b^{2}\right)-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}bb^{2}-\frac{1}{3}b^{2}\times \frac{3}{2}b-\frac{1}{2}b^{2}\times \frac{5}{2}b+b^{3})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{5}{2}b\left(-b^{2}\right)-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}b^{3}-\frac{1}{3}b^{2}\times \frac{3}{2}b-\frac{1}{2}b^{2}\times \frac{5}{2}b+b^{3})
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{5}{2}b\left(-b^{2}\right)-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{2}\times \frac{5}{2}b+b^{3})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{5}{2}b\left(-b^{2}\right)-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{5}{2}bb^{2}-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3})
Multiply -\frac{5}{2} and -1 to get \frac{5}{2}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{5}{2}b^{3}-\frac{4}{3}b^{3}\times \frac{5}{2}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3})
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{5}{2}b^{3}-\frac{10}{3}b^{3}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3})
Multiply -\frac{4}{3} and \frac{5}{2} to get -\frac{10}{3}.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{5}{6}b^{3}+\frac{3}{2}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3})
Combine \frac{5}{2}b^{3} and -\frac{10}{3}b^{3} to get -\frac{5}{6}b^{3}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{2}{3}b^{3}-\frac{1}{3}b^{3}\times \frac{3}{2}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3})
Combine -\frac{5}{6}b^{3} and \frac{3}{2}b^{3} to get \frac{2}{3}b^{3}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{2}{3}b^{3}-\frac{1}{2}b^{3}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3})
Multiply -\frac{1}{3} and \frac{3}{2} to get -\frac{1}{2}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1}{6}b^{3}-\frac{1}{2}b^{3}\times \frac{5}{2}+b^{3})
Combine \frac{2}{3}b^{3} and -\frac{1}{2}b^{3} to get \frac{1}{6}b^{3}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1}{6}b^{3}-\frac{5}{4}b^{3}+b^{3})
Multiply -\frac{1}{2} and \frac{5}{2} to get -\frac{5}{4}.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{13}{12}b^{3}+b^{3})
Combine \frac{1}{6}b^{3} and -\frac{5}{4}b^{3} to get -\frac{13}{12}b^{3}.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{1}{12}b^{3})
Combine -\frac{13}{12}b^{3} and b^{3} to get -\frac{1}{12}b^{3}.
3\left(-\frac{1}{12}\right)b^{3-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{1}{4}b^{3-1}
Multiply 3 times -\frac{1}{12}.
-\frac{1}{4}b^{2}
Subtract 1 from 3.