Evaluate
\frac{99}{32}=3.09375
Factor
\frac{3 ^ {2} \cdot 11}{2 ^ {5}} = 3\frac{3}{32} = 3.09375
Share
Copied to clipboard
-\frac{5}{2}\left(-\frac{3}{4}\right)-\frac{\frac{13}{8}}{-\frac{4}{3}}
Divide -\frac{5}{2} by -\frac{4}{3} by multiplying -\frac{5}{2} by the reciprocal of -\frac{4}{3}.
\frac{-5\left(-3\right)}{2\times 4}-\frac{\frac{13}{8}}{-\frac{4}{3}}
Multiply -\frac{5}{2} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{8}-\frac{\frac{13}{8}}{-\frac{4}{3}}
Do the multiplications in the fraction \frac{-5\left(-3\right)}{2\times 4}.
\frac{15}{8}-\frac{13}{8}\left(-\frac{3}{4}\right)
Divide \frac{13}{8} by -\frac{4}{3} by multiplying \frac{13}{8} by the reciprocal of -\frac{4}{3}.
\frac{15}{8}-\frac{13\left(-3\right)}{8\times 4}
Multiply \frac{13}{8} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{8}-\frac{-39}{32}
Do the multiplications in the fraction \frac{13\left(-3\right)}{8\times 4}.
\frac{15}{8}-\left(-\frac{39}{32}\right)
Fraction \frac{-39}{32} can be rewritten as -\frac{39}{32} by extracting the negative sign.
\frac{15}{8}+\frac{39}{32}
The opposite of -\frac{39}{32} is \frac{39}{32}.
\frac{60}{32}+\frac{39}{32}
Least common multiple of 8 and 32 is 32. Convert \frac{15}{8} and \frac{39}{32} to fractions with denominator 32.
\frac{60+39}{32}
Since \frac{60}{32} and \frac{39}{32} have the same denominator, add them by adding their numerators.
\frac{99}{32}
Add 60 and 39 to get 99.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}