Evaluate
\frac{5\sqrt{3}}{26}-\frac{6}{13}\approx -0.128451768
Factor
\frac{5 \sqrt{3} - 12}{26} = -0.12845176777521594
Share
Copied to clipboard
\frac{5}{13}\times \frac{\sqrt{3}}{2}-\left(-\frac{12}{13}\left(-\frac{1}{2}\right)\right)
Multiply -\frac{5}{13} and -1 to get \frac{5}{13}.
\frac{5}{13}\times \frac{\sqrt{3}}{2}-\frac{-12\left(-1\right)}{13\times 2}
Multiply -\frac{12}{13} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{13}\times \frac{\sqrt{3}}{2}-\frac{12}{26}
Do the multiplications in the fraction \frac{-12\left(-1\right)}{13\times 2}.
\frac{5}{13}\times \frac{\sqrt{3}}{2}-\frac{6}{13}
Reduce the fraction \frac{12}{26} to lowest terms by extracting and canceling out 2.
\frac{5\sqrt{3}}{13\times 2}-\frac{6}{13}
Multiply \frac{5}{13} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{5\sqrt{3}}{2\times 13}-\frac{6\times 2}{2\times 13}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 13\times 2 and 13 is 2\times 13. Multiply \frac{6}{13} times \frac{2}{2}.
\frac{5\sqrt{3}-6\times 2}{2\times 13}
Since \frac{5\sqrt{3}}{2\times 13} and \frac{6\times 2}{2\times 13} have the same denominator, subtract them by subtracting their numerators.
\frac{5\sqrt{3}-12}{2\times 13}
Do the multiplications in 5\sqrt{3}-6\times 2.
\frac{5\sqrt{3}-12}{26}
Expand 2\times 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}