Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\frac{4}{5}\right)^{1}x^{2}y^{3}}{4^{1}x^{2}y^{1}}
Use the rules of exponents to simplify the expression.
\frac{\left(-\frac{4}{5}\right)^{1}}{4^{1}}x^{2-2}y^{3-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-\frac{4}{5}\right)^{1}}{4^{1}}x^{0}y^{3-1}
Subtract 2 from 2.
\frac{\left(-\frac{4}{5}\right)^{1}}{4^{1}}y^{3-1}
For any number a except 0, a^{0}=1.
\frac{\left(-\frac{4}{5}\right)^{1}}{4^{1}}y^{2}
Subtract 1 from 3.
-\frac{1}{5}y^{2}
Divide -\frac{4}{5} by 4.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{-\frac{4}{5}y^{2}}{4})
Cancel out yx^{2} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(-\frac{1}{5}y^{2})
Divide -\frac{4}{5}y^{2} by 4 to get -\frac{1}{5}y^{2}.
2\left(-\frac{1}{5}\right)y^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{2}{5}y^{2-1}
Multiply 2 times -\frac{1}{5}.
-\frac{2}{5}y^{1}
Subtract 1 from 2.
-\frac{2}{5}y
For any term t, t^{1}=t.