Evaluate
-\frac{3946}{3315}\approx -1.190346908
Factor
-\frac{3946}{3315} = -1\frac{631}{3315} = -1.1903469079939668
Share
Copied to clipboard
-\frac{2}{5}-\frac{4}{12}+\frac{4}{13}-\frac{13}{17}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
-\frac{2}{5}-\frac{1}{3}+\frac{4}{13}-\frac{13}{17}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
-\frac{6}{15}-\frac{5}{15}+\frac{4}{13}-\frac{13}{17}
Least common multiple of 5 and 3 is 15. Convert -\frac{2}{5} and \frac{1}{3} to fractions with denominator 15.
\frac{-6-5}{15}+\frac{4}{13}-\frac{13}{17}
Since -\frac{6}{15} and \frac{5}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{15}+\frac{4}{13}-\frac{13}{17}
Subtract 5 from -6 to get -11.
-\frac{143}{195}+\frac{60}{195}-\frac{13}{17}
Least common multiple of 15 and 13 is 195. Convert -\frac{11}{15} and \frac{4}{13} to fractions with denominator 195.
\frac{-143+60}{195}-\frac{13}{17}
Since -\frac{143}{195} and \frac{60}{195} have the same denominator, add them by adding their numerators.
-\frac{83}{195}-\frac{13}{17}
Add -143 and 60 to get -83.
-\frac{1411}{3315}-\frac{2535}{3315}
Least common multiple of 195 and 17 is 3315. Convert -\frac{83}{195} and \frac{13}{17} to fractions with denominator 3315.
\frac{-1411-2535}{3315}
Since -\frac{1411}{3315} and \frac{2535}{3315} have the same denominator, subtract them by subtracting their numerators.
-\frac{3946}{3315}
Subtract 2535 from -1411 to get -3946.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}