Evaluate
\frac{2}{21}\approx 0.095238095
Factor
\frac{2}{3 \cdot 7} = 0.09523809523809523
Share
Copied to clipboard
-\frac{9}{21}-\frac{14}{21}-\left(-\frac{4}{3}+\frac{3}{21}\right)
Least common multiple of 7 and 3 is 21. Convert -\frac{3}{7} and \frac{2}{3} to fractions with denominator 21.
\frac{-9-14}{21}-\left(-\frac{4}{3}+\frac{3}{21}\right)
Since -\frac{9}{21} and \frac{14}{21} have the same denominator, subtract them by subtracting their numerators.
-\frac{23}{21}-\left(-\frac{4}{3}+\frac{3}{21}\right)
Subtract 14 from -9 to get -23.
-\frac{23}{21}-\left(-\frac{4}{3}+\frac{1}{7}\right)
Reduce the fraction \frac{3}{21} to lowest terms by extracting and canceling out 3.
-\frac{23}{21}-\left(-\frac{28}{21}+\frac{3}{21}\right)
Least common multiple of 3 and 7 is 21. Convert -\frac{4}{3} and \frac{1}{7} to fractions with denominator 21.
-\frac{23}{21}-\frac{-28+3}{21}
Since -\frac{28}{21} and \frac{3}{21} have the same denominator, add them by adding their numerators.
-\frac{23}{21}-\left(-\frac{25}{21}\right)
Add -28 and 3 to get -25.
-\frac{23}{21}+\frac{25}{21}
The opposite of -\frac{25}{21} is \frac{25}{21}.
\frac{-23+25}{21}
Since -\frac{23}{21} and \frac{25}{21} have the same denominator, add them by adding their numerators.
\frac{2}{21}
Add -23 and 25 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}