Evaluate
-\frac{11y^{2}z^{4}}{8}
Expand
-\frac{11y^{2}z^{4}}{8}
Share
Copied to clipboard
\frac{\left(-\frac{3}{4}\right)^{3}y^{3}\left(z^{2}\right)^{3}\times \frac{3}{4}yz^{2}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Expand \left(-\frac{3}{4}yz^{2}\right)^{3}.
\frac{\left(-\frac{3}{4}\right)^{3}y^{3}z^{6}\times \frac{3}{4}yz^{2}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{-\frac{27}{64}y^{3}z^{6}\times \frac{3}{4}yz^{2}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Calculate -\frac{3}{4} to the power of 3 and get -\frac{27}{64}.
\frac{-\frac{81}{256}y^{3}z^{6}yz^{2}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Multiply -\frac{27}{64} and \frac{3}{4} to get -\frac{81}{256}.
\frac{-\frac{81}{256}y^{4}z^{6}z^{2}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{-\frac{81}{256}y^{4}z^{8}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{-\frac{81}{256}y^{4}z^{8}}{\left(\frac{3}{4}\right)^{2}y^{2}\left(z^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Expand \left(\frac{3}{4}yz^{2}\right)^{2}.
\frac{-\frac{81}{256}y^{4}z^{8}}{\left(\frac{3}{4}\right)^{2}y^{2}z^{4}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{-\frac{81}{256}y^{4}z^{8}}{\frac{9}{16}y^{2}z^{4}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{-\frac{81}{256}y^{2}z^{4}}{\frac{9}{16}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Cancel out y^{2}z^{4} in both numerator and denominator.
\frac{-\frac{81}{256}y^{2}z^{4}\times 16}{9}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Divide -\frac{81}{256}y^{2}z^{4} by \frac{9}{16} by multiplying -\frac{81}{256}y^{2}z^{4} by the reciprocal of \frac{9}{16}.
\frac{-\frac{81}{16}y^{2}z^{4}}{9}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Multiply -\frac{81}{256} and 16 to get -\frac{81}{16}.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Divide -\frac{81}{16}y^{2}z^{4} by 9 to get -\frac{9}{16}y^{2}z^{4}.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{3}{8}y\left(-\frac{1}{3}z^{3}+\frac{3}{5}z^{3}\right)}{-\frac{2}{5}z}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Cancel out y in both numerator and denominator.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{3}{8}y\times \frac{4}{15}z^{3}}{-\frac{2}{5}z}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Combine -\frac{1}{3}z^{3} and \frac{3}{5}z^{3} to get \frac{4}{15}z^{3}.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{1}{10}yz^{3}}{-\frac{2}{5}z}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Multiply \frac{3}{8} and \frac{4}{15} to get \frac{1}{10}.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{1}{10}yz^{2}}{-\frac{2}{5}}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Cancel out z in both numerator and denominator.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{1}{10}yz^{2}\times 5}{-2}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Divide \frac{1}{10}yz^{2} by -\frac{2}{5} by multiplying \frac{1}{10}yz^{2} by the reciprocal of -\frac{2}{5}.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{1}{2}yz^{2}}{-2}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Multiply \frac{1}{10} and 5 to get \frac{1}{2}.
-\frac{9}{16}y^{2}z^{4}+\left(-\frac{1}{4}yz^{2}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Divide \frac{1}{2}yz^{2} by -2 to get -\frac{1}{4}yz^{2}.
-\frac{9}{16}y^{2}z^{4}+\left(-\frac{1}{4}\right)^{2}y^{2}\left(z^{2}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Expand \left(-\frac{1}{4}yz^{2}\right)^{2}.
-\frac{9}{16}y^{2}z^{4}+\left(-\frac{1}{4}\right)^{2}y^{2}z^{4}-\frac{7}{8}y^{2}z^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{9}{16}y^{2}z^{4}+\frac{1}{16}y^{2}z^{4}-\frac{7}{8}y^{2}z^{4}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
-\frac{1}{2}y^{2}z^{4}-\frac{7}{8}y^{2}z^{4}
Combine -\frac{9}{16}y^{2}z^{4} and \frac{1}{16}y^{2}z^{4} to get -\frac{1}{2}y^{2}z^{4}.
-\frac{11}{8}y^{2}z^{4}
Combine -\frac{1}{2}y^{2}z^{4} and -\frac{7}{8}y^{2}z^{4} to get -\frac{11}{8}y^{2}z^{4}.
\frac{\left(-\frac{3}{4}\right)^{3}y^{3}\left(z^{2}\right)^{3}\times \frac{3}{4}yz^{2}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Expand \left(-\frac{3}{4}yz^{2}\right)^{3}.
\frac{\left(-\frac{3}{4}\right)^{3}y^{3}z^{6}\times \frac{3}{4}yz^{2}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{-\frac{27}{64}y^{3}z^{6}\times \frac{3}{4}yz^{2}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Calculate -\frac{3}{4} to the power of 3 and get -\frac{27}{64}.
\frac{-\frac{81}{256}y^{3}z^{6}yz^{2}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Multiply -\frac{27}{64} and \frac{3}{4} to get -\frac{81}{256}.
\frac{-\frac{81}{256}y^{4}z^{6}z^{2}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{-\frac{81}{256}y^{4}z^{8}}{\left(\frac{3}{4}yz^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{-\frac{81}{256}y^{4}z^{8}}{\left(\frac{3}{4}\right)^{2}y^{2}\left(z^{2}\right)^{2}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Expand \left(\frac{3}{4}yz^{2}\right)^{2}.
\frac{-\frac{81}{256}y^{4}z^{8}}{\left(\frac{3}{4}\right)^{2}y^{2}z^{4}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{-\frac{81}{256}y^{4}z^{8}}{\frac{9}{16}y^{2}z^{4}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{-\frac{81}{256}y^{2}z^{4}}{\frac{9}{16}}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Cancel out y^{2}z^{4} in both numerator and denominator.
\frac{-\frac{81}{256}y^{2}z^{4}\times 16}{9}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Divide -\frac{81}{256}y^{2}z^{4} by \frac{9}{16} by multiplying -\frac{81}{256}y^{2}z^{4} by the reciprocal of \frac{9}{16}.
\frac{-\frac{81}{16}y^{2}z^{4}}{9}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Multiply -\frac{81}{256} and 16 to get -\frac{81}{16}.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{3}{8}y^{2}\left(\frac{3}{5}z^{3}-\frac{1}{3}z^{3}\right)}{-\frac{2}{5}yz}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Divide -\frac{81}{16}y^{2}z^{4} by 9 to get -\frac{9}{16}y^{2}z^{4}.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{3}{8}y\left(-\frac{1}{3}z^{3}+\frac{3}{5}z^{3}\right)}{-\frac{2}{5}z}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Cancel out y in both numerator and denominator.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{3}{8}y\times \frac{4}{15}z^{3}}{-\frac{2}{5}z}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Combine -\frac{1}{3}z^{3} and \frac{3}{5}z^{3} to get \frac{4}{15}z^{3}.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{1}{10}yz^{3}}{-\frac{2}{5}z}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Multiply \frac{3}{8} and \frac{4}{15} to get \frac{1}{10}.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{1}{10}yz^{2}}{-\frac{2}{5}}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Cancel out z in both numerator and denominator.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{1}{10}yz^{2}\times 5}{-2}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Divide \frac{1}{10}yz^{2} by -\frac{2}{5} by multiplying \frac{1}{10}yz^{2} by the reciprocal of -\frac{2}{5}.
-\frac{9}{16}y^{2}z^{4}+\left(\frac{\frac{1}{2}yz^{2}}{-2}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Multiply \frac{1}{10} and 5 to get \frac{1}{2}.
-\frac{9}{16}y^{2}z^{4}+\left(-\frac{1}{4}yz^{2}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Divide \frac{1}{2}yz^{2} by -2 to get -\frac{1}{4}yz^{2}.
-\frac{9}{16}y^{2}z^{4}+\left(-\frac{1}{4}\right)^{2}y^{2}\left(z^{2}\right)^{2}-\frac{7}{8}y^{2}z^{4}
Expand \left(-\frac{1}{4}yz^{2}\right)^{2}.
-\frac{9}{16}y^{2}z^{4}+\left(-\frac{1}{4}\right)^{2}y^{2}z^{4}-\frac{7}{8}y^{2}z^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{9}{16}y^{2}z^{4}+\frac{1}{16}y^{2}z^{4}-\frac{7}{8}y^{2}z^{4}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
-\frac{1}{2}y^{2}z^{4}-\frac{7}{8}y^{2}z^{4}
Combine -\frac{9}{16}y^{2}z^{4} and \frac{1}{16}y^{2}z^{4} to get -\frac{1}{2}y^{2}z^{4}.
-\frac{11}{8}y^{2}z^{4}
Combine -\frac{1}{2}y^{2}z^{4} and -\frac{7}{8}y^{2}z^{4} to get -\frac{11}{8}y^{2}z^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}