Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y\times \frac{3}{2}y+\frac{2}{3}x\times \frac{2}{3}x+\frac{2}{3}x\times \frac{3}{2}y
Apply the distributive property by multiplying each term of -\frac{3}{2}y+\frac{2}{3}x by each term of \frac{2}{3}x+\frac{3}{2}y.
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x\times \frac{2}{3}x+\frac{2}{3}x\times \frac{3}{2}y
Multiply y and y to get y^{2}.
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply x and x to get x^{2}.
\frac{-3\times 2}{2\times 3}yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply -\frac{3}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{3}yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Cancel out 2 in both numerator and denominator.
-yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Divide -3 by 3 to get -1.
-yx+\frac{-3\times 3}{2\times 2}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply -\frac{3}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-yx+\frac{-9}{4}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Do the multiplications in the fraction \frac{-3\times 3}{2\times 2}.
-yx-\frac{9}{4}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
-yx-\frac{9}{4}y^{2}+\frac{2\times 2}{3\times 3}x^{2}+\frac{2}{3}x\times \frac{3}{2}y
Multiply \frac{2}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
-yx-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}+\frac{2}{3}x\times \frac{3}{2}y
Do the multiplications in the fraction \frac{2\times 2}{3\times 3}.
-yx-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}+xy
Cancel out \frac{2}{3} and its reciprocal \frac{3}{2}.
-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}
Combine -yx and xy to get 0.
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y\times \frac{3}{2}y+\frac{2}{3}x\times \frac{2}{3}x+\frac{2}{3}x\times \frac{3}{2}y
Apply the distributive property by multiplying each term of -\frac{3}{2}y+\frac{2}{3}x by each term of \frac{2}{3}x+\frac{3}{2}y.
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x\times \frac{2}{3}x+\frac{2}{3}x\times \frac{3}{2}y
Multiply y and y to get y^{2}.
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply x and x to get x^{2}.
\frac{-3\times 2}{2\times 3}yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply -\frac{3}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{3}yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Cancel out 2 in both numerator and denominator.
-yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Divide -3 by 3 to get -1.
-yx+\frac{-3\times 3}{2\times 2}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply -\frac{3}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-yx+\frac{-9}{4}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Do the multiplications in the fraction \frac{-3\times 3}{2\times 2}.
-yx-\frac{9}{4}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
-yx-\frac{9}{4}y^{2}+\frac{2\times 2}{3\times 3}x^{2}+\frac{2}{3}x\times \frac{3}{2}y
Multiply \frac{2}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
-yx-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}+\frac{2}{3}x\times \frac{3}{2}y
Do the multiplications in the fraction \frac{2\times 2}{3\times 3}.
-yx-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}+xy
Cancel out \frac{2}{3} and its reciprocal \frac{3}{2}.
-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}
Combine -yx and xy to get 0.