Evaluate
\frac{4x^{2}}{9}-\frac{9y^{2}}{4}
Expand
\frac{4x^{2}}{9}-\frac{9y^{2}}{4}
Share
Copied to clipboard
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y\times \frac{3}{2}y+\frac{2}{3}x\times \frac{2}{3}x+\frac{2}{3}x\times \frac{3}{2}y
Apply the distributive property by multiplying each term of -\frac{3}{2}y+\frac{2}{3}x by each term of \frac{2}{3}x+\frac{3}{2}y.
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x\times \frac{2}{3}x+\frac{2}{3}x\times \frac{3}{2}y
Multiply y and y to get y^{2}.
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply x and x to get x^{2}.
\frac{-3\times 2}{2\times 3}yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply -\frac{3}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{3}yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Cancel out 2 in both numerator and denominator.
-yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Divide -3 by 3 to get -1.
-yx+\frac{-3\times 3}{2\times 2}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply -\frac{3}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-yx+\frac{-9}{4}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Do the multiplications in the fraction \frac{-3\times 3}{2\times 2}.
-yx-\frac{9}{4}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
-yx-\frac{9}{4}y^{2}+\frac{2\times 2}{3\times 3}x^{2}+\frac{2}{3}x\times \frac{3}{2}y
Multiply \frac{2}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
-yx-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}+\frac{2}{3}x\times \frac{3}{2}y
Do the multiplications in the fraction \frac{2\times 2}{3\times 3}.
-yx-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}+xy
Cancel out \frac{2}{3} and its reciprocal \frac{3}{2}.
-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}
Combine -yx and xy to get 0.
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y\times \frac{3}{2}y+\frac{2}{3}x\times \frac{2}{3}x+\frac{2}{3}x\times \frac{3}{2}y
Apply the distributive property by multiplying each term of -\frac{3}{2}y+\frac{2}{3}x by each term of \frac{2}{3}x+\frac{3}{2}y.
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x\times \frac{2}{3}x+\frac{2}{3}x\times \frac{3}{2}y
Multiply y and y to get y^{2}.
-\frac{3}{2}y\times \frac{2}{3}x-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply x and x to get x^{2}.
\frac{-3\times 2}{2\times 3}yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply -\frac{3}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{3}yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Cancel out 2 in both numerator and denominator.
-yx-\frac{3}{2}y^{2}\times \frac{3}{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Divide -3 by 3 to get -1.
-yx+\frac{-3\times 3}{2\times 2}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Multiply -\frac{3}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-yx+\frac{-9}{4}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Do the multiplications in the fraction \frac{-3\times 3}{2\times 2}.
-yx-\frac{9}{4}y^{2}+\frac{2}{3}x^{2}\times \frac{2}{3}+\frac{2}{3}x\times \frac{3}{2}y
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
-yx-\frac{9}{4}y^{2}+\frac{2\times 2}{3\times 3}x^{2}+\frac{2}{3}x\times \frac{3}{2}y
Multiply \frac{2}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
-yx-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}+\frac{2}{3}x\times \frac{3}{2}y
Do the multiplications in the fraction \frac{2\times 2}{3\times 3}.
-yx-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}+xy
Cancel out \frac{2}{3} and its reciprocal \frac{3}{2}.
-\frac{9}{4}y^{2}+\frac{4}{9}x^{2}
Combine -yx and xy to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}