Evaluate
\frac{35b^{2}}{6}
Differentiate w.r.t. b
\frac{35b}{3}
Share
Copied to clipboard
\frac{-\frac{25}{9}b^{2}}{-\frac{10}{21}}
Cancel out ab^{2}c^{3} in both numerator and denominator.
\frac{-\frac{25}{9}b^{2}\times 21}{-10}
Divide -\frac{25}{9}b^{2} by -\frac{10}{21} by multiplying -\frac{25}{9}b^{2} by the reciprocal of -\frac{10}{21}.
\frac{-\frac{175}{3}b^{2}}{-10}
Multiply -\frac{25}{9} and 21 to get -\frac{175}{3}.
\frac{35}{6}b^{2}
Divide -\frac{175}{3}b^{2} by -10 to get \frac{35}{6}b^{2}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{-\frac{25}{9}b^{2}}{-\frac{10}{21}})
Cancel out ab^{2}c^{3} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{-\frac{25}{9}b^{2}\times 21}{-10})
Divide -\frac{25}{9}b^{2} by -\frac{10}{21} by multiplying -\frac{25}{9}b^{2} by the reciprocal of -\frac{10}{21}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{-\frac{175}{3}b^{2}}{-10})
Multiply -\frac{25}{9} and 21 to get -\frac{175}{3}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{35}{6}b^{2})
Divide -\frac{175}{3}b^{2} by -10 to get \frac{35}{6}b^{2}.
2\times \frac{35}{6}b^{2-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{35}{3}b^{2-1}
Multiply 2 times \frac{35}{6}.
\frac{35}{3}b^{1}
Subtract 1 from 2.
\frac{35}{3}b
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}