Evaluate
-\frac{25}{36}\approx -0.694444444
Factor
-\frac{25}{36} = -0.6944444444444444
Share
Copied to clipboard
-\frac{8}{36}-\frac{9}{36}-\left(-\frac{5}{18}-\left(-\frac{1}{2}\right)\right)
Least common multiple of 9 and 4 is 36. Convert -\frac{2}{9} and \frac{1}{4} to fractions with denominator 36.
\frac{-8-9}{36}-\left(-\frac{5}{18}-\left(-\frac{1}{2}\right)\right)
Since -\frac{8}{36} and \frac{9}{36} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{36}-\left(-\frac{5}{18}-\left(-\frac{1}{2}\right)\right)
Subtract 9 from -8 to get -17.
-\frac{17}{36}-\left(-\frac{5}{18}+\frac{1}{2}\right)
The opposite of -\frac{1}{2} is \frac{1}{2}.
-\frac{17}{36}-\left(-\frac{5}{18}+\frac{9}{18}\right)
Least common multiple of 18 and 2 is 18. Convert -\frac{5}{18} and \frac{1}{2} to fractions with denominator 18.
-\frac{17}{36}-\frac{-5+9}{18}
Since -\frac{5}{18} and \frac{9}{18} have the same denominator, add them by adding their numerators.
-\frac{17}{36}-\frac{4}{18}
Add -5 and 9 to get 4.
-\frac{17}{36}-\frac{2}{9}
Reduce the fraction \frac{4}{18} to lowest terms by extracting and canceling out 2.
-\frac{17}{36}-\frac{8}{36}
Least common multiple of 36 and 9 is 36. Convert -\frac{17}{36} and \frac{2}{9} to fractions with denominator 36.
\frac{-17-8}{36}
Since -\frac{17}{36} and \frac{8}{36} have the same denominator, subtract them by subtracting their numerators.
-\frac{25}{36}
Subtract 8 from -17 to get -25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}