Evaluate
-\frac{15x^{2}}{8}
Expand
-\frac{15x^{2}}{8}
Graph
Share
Copied to clipboard
-\frac{1}{2}x\left(\frac{3}{4}x+3x\right)
Combine -\frac{2}{3}x and \frac{1}{6}x to get -\frac{1}{2}x.
-\frac{1}{2}x\times \frac{15}{4}x
Combine \frac{3}{4}x and 3x to get \frac{15}{4}x.
\frac{-15}{2\times 4}xx
Multiply -\frac{1}{2} times \frac{15}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-15}{8}xx
Do the multiplications in the fraction \frac{-15}{2\times 4}.
-\frac{15}{8}xx
Fraction \frac{-15}{8} can be rewritten as -\frac{15}{8} by extracting the negative sign.
-\frac{15}{8}x^{2}
Multiply x and x to get x^{2}.
-\frac{1}{2}x\left(\frac{3}{4}x+3x\right)
Combine -\frac{2}{3}x and \frac{1}{6}x to get -\frac{1}{2}x.
-\frac{1}{2}x\times \frac{15}{4}x
Combine \frac{3}{4}x and 3x to get \frac{15}{4}x.
\frac{-15}{2\times 4}xx
Multiply -\frac{1}{2} times \frac{15}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-15}{8}xx
Do the multiplications in the fraction \frac{-15}{2\times 4}.
-\frac{15}{8}xx
Fraction \frac{-15}{8} can be rewritten as -\frac{15}{8} by extracting the negative sign.
-\frac{15}{8}x^{2}
Multiply x and x to get x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}