Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. w
Tick mark Image

Similar Problems from Web Search

Share

-\frac{2}{3}w^{4}-w^{4}\left(-\frac{9}{10}\right)
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
-\frac{2}{3}w^{4}+\frac{9}{10}w^{4}
Multiply -1 and -\frac{9}{10} to get \frac{9}{10}.
\frac{7}{30}w^{4}
Combine -\frac{2}{3}w^{4} and \frac{9}{10}w^{4} to get \frac{7}{30}w^{4}.
4\left(-\frac{2}{3}\right)w^{4-1}+\left(-\left(-\frac{9w^{3}}{10}\right)\right)w^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{8}{3}w^{4-1}+\left(-\left(-\frac{9w^{3}}{10}\right)\right)w^{1-1}
Multiply 4 times -\frac{2}{3}.
-\frac{8}{3}w^{3}+\left(-\left(-\frac{9w^{3}}{10}\right)\right)w^{1-1}
Subtract 1 from 4.
-\frac{8}{3}w^{3}+\frac{9w^{3}}{10}w^{0}
Subtract 1 from 1.
-\frac{8}{3}w^{3}+\frac{9w^{3}}{10}\times 1
For any term t except 0, t^{0}=1.
-\frac{8}{3}w^{3}+\frac{9w^{3}}{10}
For any term t, t\times 1=t and 1t=t.