Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. w
Tick mark Image

Similar Problems from Web Search

Share

-\frac{2}{3}w^{2}+\left(-w^{2}\right)\left(-\frac{1}{5}\right)
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
-\frac{2}{3}w^{2}+\frac{1}{5}w^{2}
Multiply -1 and -\frac{1}{5} to get \frac{1}{5}.
-\frac{7}{15}w^{2}
Combine -\frac{2}{3}w^{2} and \frac{1}{5}w^{2} to get -\frac{7}{15}w^{2}.
\frac{\mathrm{d}}{\mathrm{d}w}(-\frac{2}{3}w^{2}+\left(-w^{2}\right)\left(-\frac{1}{5}\right))
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}w}(-\frac{2}{3}w^{2}+\frac{1}{5}w^{2})
Multiply -1 and -\frac{1}{5} to get \frac{1}{5}.
\frac{\mathrm{d}}{\mathrm{d}w}(-\frac{7}{15}w^{2})
Combine -\frac{2}{3}w^{2} and \frac{1}{5}w^{2} to get -\frac{7}{15}w^{2}.
2\left(-\frac{7}{15}\right)w^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{14}{15}w^{2-1}
Multiply 2 times -\frac{7}{15}.
-\frac{14}{15}w^{1}
Subtract 1 from 2.
-\frac{14}{15}w
For any term t, t^{1}=t.