Evaluate
-\frac{7w^{2}}{15}
Differentiate w.r.t. w
-\frac{14w}{15}
Share
Copied to clipboard
-\frac{2}{3}w^{2}+\left(-w^{2}\right)\left(-\frac{1}{5}\right)
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
-\frac{2}{3}w^{2}+\frac{1}{5}w^{2}
Multiply -1 and -\frac{1}{5} to get \frac{1}{5}.
-\frac{7}{15}w^{2}
Combine -\frac{2}{3}w^{2} and \frac{1}{5}w^{2} to get -\frac{7}{15}w^{2}.
\frac{\mathrm{d}}{\mathrm{d}w}(-\frac{2}{3}w^{2}+\left(-w^{2}\right)\left(-\frac{1}{5}\right))
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}w}(-\frac{2}{3}w^{2}+\frac{1}{5}w^{2})
Multiply -1 and -\frac{1}{5} to get \frac{1}{5}.
\frac{\mathrm{d}}{\mathrm{d}w}(-\frac{7}{15}w^{2})
Combine -\frac{2}{3}w^{2} and \frac{1}{5}w^{2} to get -\frac{7}{15}w^{2}.
2\left(-\frac{7}{15}\right)w^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{14}{15}w^{2-1}
Multiply 2 times -\frac{7}{15}.
-\frac{14}{15}w^{1}
Subtract 1 from 2.
-\frac{14}{15}w
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}