Evaluate
\frac{\left(abd\right)^{2}}{36}
Expand
\frac{\left(abd\right)^{2}}{36}
Share
Copied to clipboard
\frac{\frac{\left(-\frac{2}{3}\right)^{2}\left(a^{5}\right)^{2}\left(b^{4}\right)^{2}\left(d^{3}\right)^{2}}{\left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Expand \left(-\frac{2}{3}a^{5}b^{4}d^{3}\right)^{2}.
\frac{\frac{\left(-\frac{2}{3}\right)^{2}a^{10}\left(b^{4}\right)^{2}\left(d^{3}\right)^{2}}{\left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{\frac{\left(-\frac{2}{3}\right)^{2}a^{10}b^{8}\left(d^{3}\right)^{2}}{\left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{\frac{\left(-\frac{2}{3}\right)^{2}a^{10}b^{8}d^{6}}{\left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\frac{\frac{4}{9}a^{10}b^{8}d^{6}}{\left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{\frac{4}{9}a^{10}b^{8}d^{6}}{\left(-\frac{8}{15}\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}d^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Expand \left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}.
\frac{\frac{\frac{4}{9}a^{10}b^{8}d^{6}}{\left(-\frac{8}{15}\right)^{2}a^{4}\left(b^{2}\right)^{2}d^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{\frac{4}{9}a^{10}b^{8}d^{6}}{\left(-\frac{8}{15}\right)^{2}a^{4}b^{4}d^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{\frac{4}{9}a^{10}b^{8}d^{6}}{\frac{64}{225}a^{4}b^{4}d^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Calculate -\frac{8}{15} to the power of 2 and get \frac{64}{225}.
\frac{\frac{\frac{4}{9}b^{4}d^{4}a^{6}}{\frac{64}{225}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Cancel out d^{2}a^{4}b^{4} in both numerator and denominator.
\frac{\frac{\frac{4}{9}b^{4}d^{4}a^{6}\times 225}{64}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Divide \frac{4}{9}b^{4}d^{4}a^{6} by \frac{64}{225} by multiplying \frac{4}{9}b^{4}d^{4}a^{6} by the reciprocal of \frac{64}{225}.
\frac{\frac{100b^{4}d^{4}a^{6}}{64}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Multiply \frac{4}{9} and 225 to get 100.
\frac{\frac{25}{16}b^{4}d^{4}a^{6}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Divide 100b^{4}d^{4}a^{6} by 64 to get \frac{25}{16}b^{4}d^{4}a^{6}.
\frac{\frac{25}{16}b^{4}d^{4}a^{6}}{\left(-\frac{15}{2}\right)^{2}\left(a^{2}\right)^{2}b^{2}d^{2}}
Expand \left(-\frac{15}{2}a^{2}bd\right)^{2}.
\frac{\frac{25}{16}b^{4}d^{4}a^{6}}{\left(-\frac{15}{2}\right)^{2}a^{4}b^{2}d^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{25}{16}b^{4}d^{4}a^{6}}{\frac{225}{4}a^{4}b^{2}d^{2}}
Calculate -\frac{15}{2} to the power of 2 and get \frac{225}{4}.
\frac{\frac{25}{16}a^{2}b^{2}d^{2}}{\frac{225}{4}}
Cancel out b^{2}d^{2}a^{4} in both numerator and denominator.
\frac{\frac{25}{16}a^{2}b^{2}d^{2}\times 4}{225}
Divide \frac{25}{16}a^{2}b^{2}d^{2} by \frac{225}{4} by multiplying \frac{25}{16}a^{2}b^{2}d^{2} by the reciprocal of \frac{225}{4}.
\frac{\frac{25}{4}a^{2}b^{2}d^{2}}{225}
Multiply \frac{25}{16} and 4 to get \frac{25}{4}.
\frac{1}{36}a^{2}b^{2}d^{2}
Divide \frac{25}{4}a^{2}b^{2}d^{2} by 225 to get \frac{1}{36}a^{2}b^{2}d^{2}.
\frac{\frac{\left(-\frac{2}{3}\right)^{2}\left(a^{5}\right)^{2}\left(b^{4}\right)^{2}\left(d^{3}\right)^{2}}{\left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Expand \left(-\frac{2}{3}a^{5}b^{4}d^{3}\right)^{2}.
\frac{\frac{\left(-\frac{2}{3}\right)^{2}a^{10}\left(b^{4}\right)^{2}\left(d^{3}\right)^{2}}{\left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{\frac{\left(-\frac{2}{3}\right)^{2}a^{10}b^{8}\left(d^{3}\right)^{2}}{\left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{\frac{\left(-\frac{2}{3}\right)^{2}a^{10}b^{8}d^{6}}{\left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\frac{\frac{4}{9}a^{10}b^{8}d^{6}}{\left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{\frac{4}{9}a^{10}b^{8}d^{6}}{\left(-\frac{8}{15}\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}d^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Expand \left(-\frac{8}{15}a^{2}b^{2}d\right)^{2}.
\frac{\frac{\frac{4}{9}a^{10}b^{8}d^{6}}{\left(-\frac{8}{15}\right)^{2}a^{4}\left(b^{2}\right)^{2}d^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{\frac{4}{9}a^{10}b^{8}d^{6}}{\left(-\frac{8}{15}\right)^{2}a^{4}b^{4}d^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{\frac{4}{9}a^{10}b^{8}d^{6}}{\frac{64}{225}a^{4}b^{4}d^{2}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Calculate -\frac{8}{15} to the power of 2 and get \frac{64}{225}.
\frac{\frac{\frac{4}{9}b^{4}d^{4}a^{6}}{\frac{64}{225}}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Cancel out d^{2}a^{4}b^{4} in both numerator and denominator.
\frac{\frac{\frac{4}{9}b^{4}d^{4}a^{6}\times 225}{64}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Divide \frac{4}{9}b^{4}d^{4}a^{6} by \frac{64}{225} by multiplying \frac{4}{9}b^{4}d^{4}a^{6} by the reciprocal of \frac{64}{225}.
\frac{\frac{100b^{4}d^{4}a^{6}}{64}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Multiply \frac{4}{9} and 225 to get 100.
\frac{\frac{25}{16}b^{4}d^{4}a^{6}}{\left(-\frac{15}{2}a^{2}bd\right)^{2}}
Divide 100b^{4}d^{4}a^{6} by 64 to get \frac{25}{16}b^{4}d^{4}a^{6}.
\frac{\frac{25}{16}b^{4}d^{4}a^{6}}{\left(-\frac{15}{2}\right)^{2}\left(a^{2}\right)^{2}b^{2}d^{2}}
Expand \left(-\frac{15}{2}a^{2}bd\right)^{2}.
\frac{\frac{25}{16}b^{4}d^{4}a^{6}}{\left(-\frac{15}{2}\right)^{2}a^{4}b^{2}d^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{25}{16}b^{4}d^{4}a^{6}}{\frac{225}{4}a^{4}b^{2}d^{2}}
Calculate -\frac{15}{2} to the power of 2 and get \frac{225}{4}.
\frac{\frac{25}{16}a^{2}b^{2}d^{2}}{\frac{225}{4}}
Cancel out b^{2}d^{2}a^{4} in both numerator and denominator.
\frac{\frac{25}{16}a^{2}b^{2}d^{2}\times 4}{225}
Divide \frac{25}{16}a^{2}b^{2}d^{2} by \frac{225}{4} by multiplying \frac{25}{16}a^{2}b^{2}d^{2} by the reciprocal of \frac{225}{4}.
\frac{\frac{25}{4}a^{2}b^{2}d^{2}}{225}
Multiply \frac{25}{16} and 4 to get \frac{25}{4}.
\frac{1}{36}a^{2}b^{2}d^{2}
Divide \frac{25}{4}a^{2}b^{2}d^{2} by 225 to get \frac{1}{36}a^{2}b^{2}d^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}