Evaluate
\frac{246}{25}=9.84
Factor
\frac{2 \cdot 3 \cdot 41}{5 ^ {2}} = 9\frac{21}{25} = 9.84
Share
Copied to clipboard
\frac{361}{25}+2\left(-\frac{19}{5}\right)+3
Calculate -\frac{19}{5} to the power of 2 and get \frac{361}{25}.
\frac{361}{25}+\frac{2\left(-19\right)}{5}+3
Express 2\left(-\frac{19}{5}\right) as a single fraction.
\frac{361}{25}+\frac{-38}{5}+3
Multiply 2 and -19 to get -38.
\frac{361}{25}-\frac{38}{5}+3
Fraction \frac{-38}{5} can be rewritten as -\frac{38}{5} by extracting the negative sign.
\frac{361}{25}-\frac{190}{25}+3
Least common multiple of 25 and 5 is 25. Convert \frac{361}{25} and \frac{38}{5} to fractions with denominator 25.
\frac{361-190}{25}+3
Since \frac{361}{25} and \frac{190}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{171}{25}+3
Subtract 190 from 361 to get 171.
\frac{171}{25}+\frac{75}{25}
Convert 3 to fraction \frac{75}{25}.
\frac{171+75}{25}
Since \frac{171}{25} and \frac{75}{25} have the same denominator, add them by adding their numerators.
\frac{246}{25}
Add 171 and 75 to get 246.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}