Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. s
Tick mark Image

Similar Problems from Web Search

Share

-\frac{7}{18}\left(-\frac{6s}{112}\right)
Reduce the fraction \frac{14}{36} to lowest terms by extracting and canceling out 2.
-\frac{7}{18}\left(-\frac{3}{56}s\right)
Divide 6s by 112 to get \frac{3}{56}s.
\frac{7}{18}\times \frac{3}{56}s
Multiply -\frac{7}{18} and -1 to get \frac{7}{18}.
\frac{7\times 3}{18\times 56}s
Multiply \frac{7}{18} times \frac{3}{56} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{1008}s
Do the multiplications in the fraction \frac{7\times 3}{18\times 56}.
\frac{1}{48}s
Reduce the fraction \frac{21}{1008} to lowest terms by extracting and canceling out 21.
\frac{\mathrm{d}}{\mathrm{d}s}(-\frac{7}{18}\left(-\frac{6s}{112}\right))
Reduce the fraction \frac{14}{36} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}s}(-\frac{7}{18}\left(-\frac{3}{56}s\right))
Divide 6s by 112 to get \frac{3}{56}s.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{7}{18}\times \frac{3}{56}s)
Multiply -\frac{7}{18} and -1 to get \frac{7}{18}.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{7\times 3}{18\times 56}s)
Multiply \frac{7}{18} times \frac{3}{56} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{21}{1008}s)
Do the multiplications in the fraction \frac{7\times 3}{18\times 56}.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{1}{48}s)
Reduce the fraction \frac{21}{1008} to lowest terms by extracting and canceling out 21.
\frac{1}{48}s^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{1}{48}s^{0}
Subtract 1 from 1.
\frac{1}{48}\times 1
For any term t except 0, t^{0}=1.
\frac{1}{48}
For any term t, t\times 1=t and 1t=t.