Evaluate
\frac{3001}{30}\approx 100.033333333
Factor
\frac{3001}{2 \cdot 3 \cdot 5} = 100\frac{1}{30} = 100.03333333333333
Share
Copied to clipboard
\frac{-\frac{11}{4}+\frac{2\times 3}{5}}{\left(-\frac{1}{4}\right)^{3}}+\sqrt{\frac{25}{36}}
Express 2\times \frac{3}{5} as a single fraction.
\frac{-\frac{11}{4}+\frac{6}{5}}{\left(-\frac{1}{4}\right)^{3}}+\sqrt{\frac{25}{36}}
Multiply 2 and 3 to get 6.
\frac{-\frac{55}{20}+\frac{24}{20}}{\left(-\frac{1}{4}\right)^{3}}+\sqrt{\frac{25}{36}}
Least common multiple of 4 and 5 is 20. Convert -\frac{11}{4} and \frac{6}{5} to fractions with denominator 20.
\frac{\frac{-55+24}{20}}{\left(-\frac{1}{4}\right)^{3}}+\sqrt{\frac{25}{36}}
Since -\frac{55}{20} and \frac{24}{20} have the same denominator, add them by adding their numerators.
\frac{-\frac{31}{20}}{\left(-\frac{1}{4}\right)^{3}}+\sqrt{\frac{25}{36}}
Add -55 and 24 to get -31.
\frac{-\frac{31}{20}}{-\frac{1}{64}}+\sqrt{\frac{25}{36}}
Calculate -\frac{1}{4} to the power of 3 and get -\frac{1}{64}.
-\frac{31}{20}\left(-64\right)+\sqrt{\frac{25}{36}}
Divide -\frac{31}{20} by -\frac{1}{64} by multiplying -\frac{31}{20} by the reciprocal of -\frac{1}{64}.
\frac{-31\left(-64\right)}{20}+\sqrt{\frac{25}{36}}
Express -\frac{31}{20}\left(-64\right) as a single fraction.
\frac{1984}{20}+\sqrt{\frac{25}{36}}
Multiply -31 and -64 to get 1984.
\frac{496}{5}+\sqrt{\frac{25}{36}}
Reduce the fraction \frac{1984}{20} to lowest terms by extracting and canceling out 4.
\frac{496}{5}+\frac{5}{6}
Rewrite the square root of the division \frac{25}{36} as the division of square roots \frac{\sqrt{25}}{\sqrt{36}}. Take the square root of both numerator and denominator.
\frac{2976}{30}+\frac{25}{30}
Least common multiple of 5 and 6 is 30. Convert \frac{496}{5} and \frac{5}{6} to fractions with denominator 30.
\frac{2976+25}{30}
Since \frac{2976}{30} and \frac{25}{30} have the same denominator, add them by adding their numerators.
\frac{3001}{30}
Add 2976 and 25 to get 3001.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}