Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\left(\frac{1}{4}a^{2}-a\right)^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Use the distributive property to multiply -\frac{1}{8}a^{3}-a+4 by \frac{1}{8}a^{3}-a-4 and combine like terms.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}\left(a^{2}\right)^{3}-\frac{3}{16}\left(a^{2}\right)^{2}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(\frac{1}{4}a^{2}-a\right)^{3}.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}\left(a^{2}\right)^{2}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{4}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{5}+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{3}+a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine -\frac{1}{64}a^{6} and \frac{1}{64}a^{6} to get 0.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine a^{3} and -a^{3} to get 0.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(\left(3a\right)^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Consider \left(3a-8\right)\left(3a+8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(3^{2}a^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Expand \left(3a\right)^{2}.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(9a^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Calculate 3 to the power of 2 and get 9.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-9a^{2}+64-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To find the opposite of 9a^{2}-64, find the opposite of each term.
-8a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}+64-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine a^{2} and -9a^{2} to get -8a^{2}.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Add -16 and 64 to get 48.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{4}\left(a^{2}\right)^{2}-4a^{2}+16\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{1}{2}a^{2}-4\right)^{2}.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{4}a^{4}-4a^{2}+16\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\frac{3}{4}a^{4}+12a^{2}-48
Use the distributive property to multiply -3 by \frac{1}{4}a^{4}-4a^{2}+16.
-8a^{2}+48-\frac{3}{16}a^{5}+12a^{2}-48
Combine \frac{3}{4}a^{4} and -\frac{3}{4}a^{4} to get 0.
4a^{2}+48-\frac{3}{16}a^{5}-48
Combine -8a^{2} and 12a^{2} to get 4a^{2}.
4a^{2}-\frac{3}{16}a^{5}
Subtract 48 from 48 to get 0.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\left(\frac{1}{4}a^{2}-a\right)^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Use the distributive property to multiply -\frac{1}{8}a^{3}-a+4 by \frac{1}{8}a^{3}-a-4 and combine like terms.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}\left(a^{2}\right)^{3}-\frac{3}{16}\left(a^{2}\right)^{2}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(\frac{1}{4}a^{2}-a\right)^{3}.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}\left(a^{2}\right)^{2}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{4}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{5}+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{3}+a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine -\frac{1}{64}a^{6} and \frac{1}{64}a^{6} to get 0.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine a^{3} and -a^{3} to get 0.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(\left(3a\right)^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Consider \left(3a-8\right)\left(3a+8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(3^{2}a^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Expand \left(3a\right)^{2}.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(9a^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Calculate 3 to the power of 2 and get 9.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-9a^{2}+64-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To find the opposite of 9a^{2}-64, find the opposite of each term.
-8a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}+64-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine a^{2} and -9a^{2} to get -8a^{2}.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Add -16 and 64 to get 48.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{4}\left(a^{2}\right)^{2}-4a^{2}+16\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{1}{2}a^{2}-4\right)^{2}.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{4}a^{4}-4a^{2}+16\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\frac{3}{4}a^{4}+12a^{2}-48
Use the distributive property to multiply -3 by \frac{1}{4}a^{4}-4a^{2}+16.
-8a^{2}+48-\frac{3}{16}a^{5}+12a^{2}-48
Combine \frac{3}{4}a^{4} and -\frac{3}{4}a^{4} to get 0.
4a^{2}+48-\frac{3}{16}a^{5}-48
Combine -8a^{2} and 12a^{2} to get 4a^{2}.
4a^{2}-\frac{3}{16}a^{5}
Subtract 48 from 48 to get 0.