Evaluate
-\frac{3a^{5}}{16}+4a^{2}
Expand
-\frac{3a^{5}}{16}+4a^{2}
Share
Copied to clipboard
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\left(\frac{1}{4}a^{2}-a\right)^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Use the distributive property to multiply -\frac{1}{8}a^{3}-a+4 by \frac{1}{8}a^{3}-a-4 and combine like terms.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}\left(a^{2}\right)^{3}-\frac{3}{16}\left(a^{2}\right)^{2}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(\frac{1}{4}a^{2}-a\right)^{3}.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}\left(a^{2}\right)^{2}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{4}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{5}+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{3}+a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine -\frac{1}{64}a^{6} and \frac{1}{64}a^{6} to get 0.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine a^{3} and -a^{3} to get 0.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(\left(3a\right)^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Consider \left(3a-8\right)\left(3a+8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(3^{2}a^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Expand \left(3a\right)^{2}.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(9a^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Calculate 3 to the power of 2 and get 9.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-9a^{2}+64-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To find the opposite of 9a^{2}-64, find the opposite of each term.
-8a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}+64-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine a^{2} and -9a^{2} to get -8a^{2}.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Add -16 and 64 to get 48.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{4}\left(a^{2}\right)^{2}-4a^{2}+16\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{1}{2}a^{2}-4\right)^{2}.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{4}a^{4}-4a^{2}+16\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\frac{3}{4}a^{4}+12a^{2}-48
Use the distributive property to multiply -3 by \frac{1}{4}a^{4}-4a^{2}+16.
-8a^{2}+48-\frac{3}{16}a^{5}+12a^{2}-48
Combine \frac{3}{4}a^{4} and -\frac{3}{4}a^{4} to get 0.
4a^{2}+48-\frac{3}{16}a^{5}-48
Combine -8a^{2} and 12a^{2} to get 4a^{2}.
4a^{2}-\frac{3}{16}a^{5}
Subtract 48 from 48 to get 0.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\left(\frac{1}{4}a^{2}-a\right)^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Use the distributive property to multiply -\frac{1}{8}a^{3}-a+4 by \frac{1}{8}a^{3}-a-4 and combine like terms.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}\left(a^{2}\right)^{3}-\frac{3}{16}\left(a^{2}\right)^{2}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(\frac{1}{4}a^{2}-a\right)^{3}.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}\left(a^{2}\right)^{2}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{4}a+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{5}+\frac{3}{4}a^{2}a^{2}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
-\frac{1}{64}a^{6}+a^{3}+a^{2}-16+\frac{1}{64}a^{6}-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{3}+a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-a^{3}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine -\frac{1}{64}a^{6} and \frac{1}{64}a^{6} to get 0.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(3a-8\right)\left(3a+8\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine a^{3} and -a^{3} to get 0.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(\left(3a\right)^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Consider \left(3a-8\right)\left(3a+8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(3^{2}a^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Expand \left(3a\right)^{2}.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\left(9a^{2}-64\right)-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Calculate 3 to the power of 2 and get 9.
a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-9a^{2}+64-3\left(\frac{1}{2}a^{2}-4\right)^{2}
To find the opposite of 9a^{2}-64, find the opposite of each term.
-8a^{2}-16-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}+64-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Combine a^{2} and -9a^{2} to get -8a^{2}.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{2}a^{2}-4\right)^{2}
Add -16 and 64 to get 48.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{4}\left(a^{2}\right)^{2}-4a^{2}+16\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{1}{2}a^{2}-4\right)^{2}.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-3\left(\frac{1}{4}a^{4}-4a^{2}+16\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-8a^{2}+48-\frac{3}{16}a^{5}+\frac{3}{4}a^{4}-\frac{3}{4}a^{4}+12a^{2}-48
Use the distributive property to multiply -3 by \frac{1}{4}a^{4}-4a^{2}+16.
-8a^{2}+48-\frac{3}{16}a^{5}+12a^{2}-48
Combine \frac{3}{4}a^{4} and -\frac{3}{4}a^{4} to get 0.
4a^{2}+48-\frac{3}{16}a^{5}-48
Combine -8a^{2} and 12a^{2} to get 4a^{2}.
4a^{2}-\frac{3}{16}a^{5}
Subtract 48 from 48 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}