Evaluate
\frac{\left(84-2y-7x\right)\left(20+15y-2x\right)}{140}
Expand
-\frac{101xy}{140}+\frac{x^{2}}{10}-\frac{3y^{2}}{14}+\frac{61y}{7}-\frac{11x}{5}+12
Share
Copied to clipboard
-\frac{1}{5}x\left(-\frac{1}{2}\right)x-\frac{1}{5}x\left(-\frac{1}{7}\right)y-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y\left(-\frac{1}{7}\right)y+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Apply the distributive property by multiplying each term of -\frac{1}{5}x+\frac{3}{2}y+2 by each term of -\frac{1}{2}x-\frac{1}{7}y+6.
-\frac{1}{5}x^{2}\left(-\frac{1}{2}\right)-\frac{1}{5}x\left(-\frac{1}{7}\right)y-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y\left(-\frac{1}{7}\right)y+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply x and x to get x^{2}.
-\frac{1}{5}x^{2}\left(-\frac{1}{2}\right)-\frac{1}{5}x\left(-\frac{1}{7}\right)y-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply y and y to get y^{2}.
\frac{-\left(-1\right)}{5\times 2}x^{2}-\frac{1}{5}x\left(-\frac{1}{7}\right)y-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply -\frac{1}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{10}x^{2}-\frac{1}{5}x\left(-\frac{1}{7}\right)y-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Do the multiplications in the fraction \frac{-\left(-1\right)}{5\times 2}.
\frac{1}{10}x^{2}+\frac{-\left(-1\right)}{5\times 7}xy-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply -\frac{1}{5} times -\frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{10}x^{2}+\frac{1}{35}xy-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Do the multiplications in the fraction \frac{-\left(-1\right)}{5\times 7}.
\frac{1}{10}x^{2}+\frac{1}{35}xy+\frac{-6}{5}x+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Express -\frac{1}{5}\times 6 as a single fraction.
\frac{1}{10}x^{2}+\frac{1}{35}xy-\frac{6}{5}x+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
\frac{1}{10}x^{2}+\frac{1}{35}xy-\frac{6}{5}x+\frac{3\left(-1\right)}{2\times 2}yx+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply \frac{3}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{10}x^{2}+\frac{1}{35}xy-\frac{6}{5}x+\frac{-3}{4}yx+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Do the multiplications in the fraction \frac{3\left(-1\right)}{2\times 2}.
\frac{1}{10}x^{2}+\frac{1}{35}xy-\frac{6}{5}x-\frac{3}{4}yx+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Combine \frac{1}{35}xy and -\frac{3}{4}yx to get -\frac{101}{140}xy.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x+\frac{3\left(-1\right)}{2\times 7}y^{2}+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply \frac{3}{2} times -\frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x+\frac{-3}{14}y^{2}+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Do the multiplications in the fraction \frac{3\left(-1\right)}{2\times 7}.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x-\frac{3}{14}y^{2}+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Fraction \frac{-3}{14} can be rewritten as -\frac{3}{14} by extracting the negative sign.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x-\frac{3}{14}y^{2}+\frac{3\times 6}{2}y+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Express \frac{3}{2}\times 6 as a single fraction.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x-\frac{3}{14}y^{2}+\frac{18}{2}y+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply 3 and 6 to get 18.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x-\frac{3}{14}y^{2}+9y+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Divide 18 by 2 to get 9.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x-\frac{3}{14}y^{2}+9y-x+2\left(-\frac{1}{7}\right)y+12
Cancel out 2 and 2.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{11}{5}x-\frac{3}{14}y^{2}+9y+2\left(-\frac{1}{7}\right)y+12
Combine -\frac{6}{5}x and -x to get -\frac{11}{5}x.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{11}{5}x-\frac{3}{14}y^{2}+9y+\frac{2\left(-1\right)}{7}y+12
Express 2\left(-\frac{1}{7}\right) as a single fraction.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{11}{5}x-\frac{3}{14}y^{2}+9y+\frac{-2}{7}y+12
Multiply 2 and -1 to get -2.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{11}{5}x-\frac{3}{14}y^{2}+9y-\frac{2}{7}y+12
Fraction \frac{-2}{7} can be rewritten as -\frac{2}{7} by extracting the negative sign.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{11}{5}x-\frac{3}{14}y^{2}+\frac{61}{7}y+12
Combine 9y and -\frac{2}{7}y to get \frac{61}{7}y.
-\frac{1}{5}x\left(-\frac{1}{2}\right)x-\frac{1}{5}x\left(-\frac{1}{7}\right)y-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y\left(-\frac{1}{7}\right)y+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Apply the distributive property by multiplying each term of -\frac{1}{5}x+\frac{3}{2}y+2 by each term of -\frac{1}{2}x-\frac{1}{7}y+6.
-\frac{1}{5}x^{2}\left(-\frac{1}{2}\right)-\frac{1}{5}x\left(-\frac{1}{7}\right)y-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y\left(-\frac{1}{7}\right)y+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply x and x to get x^{2}.
-\frac{1}{5}x^{2}\left(-\frac{1}{2}\right)-\frac{1}{5}x\left(-\frac{1}{7}\right)y-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply y and y to get y^{2}.
\frac{-\left(-1\right)}{5\times 2}x^{2}-\frac{1}{5}x\left(-\frac{1}{7}\right)y-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply -\frac{1}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{10}x^{2}-\frac{1}{5}x\left(-\frac{1}{7}\right)y-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Do the multiplications in the fraction \frac{-\left(-1\right)}{5\times 2}.
\frac{1}{10}x^{2}+\frac{-\left(-1\right)}{5\times 7}xy-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply -\frac{1}{5} times -\frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{10}x^{2}+\frac{1}{35}xy-\frac{1}{5}x\times 6+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Do the multiplications in the fraction \frac{-\left(-1\right)}{5\times 7}.
\frac{1}{10}x^{2}+\frac{1}{35}xy+\frac{-6}{5}x+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Express -\frac{1}{5}\times 6 as a single fraction.
\frac{1}{10}x^{2}+\frac{1}{35}xy-\frac{6}{5}x+\frac{3}{2}y\left(-\frac{1}{2}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
\frac{1}{10}x^{2}+\frac{1}{35}xy-\frac{6}{5}x+\frac{3\left(-1\right)}{2\times 2}yx+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply \frac{3}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{10}x^{2}+\frac{1}{35}xy-\frac{6}{5}x+\frac{-3}{4}yx+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Do the multiplications in the fraction \frac{3\left(-1\right)}{2\times 2}.
\frac{1}{10}x^{2}+\frac{1}{35}xy-\frac{6}{5}x-\frac{3}{4}yx+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x+\frac{3}{2}y^{2}\left(-\frac{1}{7}\right)+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Combine \frac{1}{35}xy and -\frac{3}{4}yx to get -\frac{101}{140}xy.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x+\frac{3\left(-1\right)}{2\times 7}y^{2}+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply \frac{3}{2} times -\frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x+\frac{-3}{14}y^{2}+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Do the multiplications in the fraction \frac{3\left(-1\right)}{2\times 7}.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x-\frac{3}{14}y^{2}+\frac{3}{2}y\times 6+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Fraction \frac{-3}{14} can be rewritten as -\frac{3}{14} by extracting the negative sign.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x-\frac{3}{14}y^{2}+\frac{3\times 6}{2}y+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Express \frac{3}{2}\times 6 as a single fraction.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x-\frac{3}{14}y^{2}+\frac{18}{2}y+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Multiply 3 and 6 to get 18.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x-\frac{3}{14}y^{2}+9y+2\left(-\frac{1}{2}\right)x+2\left(-\frac{1}{7}\right)y+12
Divide 18 by 2 to get 9.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{6}{5}x-\frac{3}{14}y^{2}+9y-x+2\left(-\frac{1}{7}\right)y+12
Cancel out 2 and 2.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{11}{5}x-\frac{3}{14}y^{2}+9y+2\left(-\frac{1}{7}\right)y+12
Combine -\frac{6}{5}x and -x to get -\frac{11}{5}x.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{11}{5}x-\frac{3}{14}y^{2}+9y+\frac{2\left(-1\right)}{7}y+12
Express 2\left(-\frac{1}{7}\right) as a single fraction.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{11}{5}x-\frac{3}{14}y^{2}+9y+\frac{-2}{7}y+12
Multiply 2 and -1 to get -2.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{11}{5}x-\frac{3}{14}y^{2}+9y-\frac{2}{7}y+12
Fraction \frac{-2}{7} can be rewritten as -\frac{2}{7} by extracting the negative sign.
\frac{1}{10}x^{2}-\frac{101}{140}xy-\frac{11}{5}x-\frac{3}{14}y^{2}+\frac{61}{7}y+12
Combine 9y and -\frac{2}{7}y to get \frac{61}{7}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}