Verify
false
Share
Copied to clipboard
\frac{-\frac{1}{42}}{\frac{7}{42}-\frac{12}{42}+\frac{2}{3}-\frac{3}{14}}=\frac{1}{3}
Least common multiple of 6 and 7 is 42. Convert \frac{1}{6} and \frac{2}{7} to fractions with denominator 42.
\frac{-\frac{1}{42}}{\frac{7-12}{42}+\frac{2}{3}-\frac{3}{14}}=\frac{1}{3}
Since \frac{7}{42} and \frac{12}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{42}}{-\frac{5}{42}+\frac{2}{3}-\frac{3}{14}}=\frac{1}{3}
Subtract 12 from 7 to get -5.
\frac{-\frac{1}{42}}{-\frac{5}{42}+\frac{28}{42}-\frac{3}{14}}=\frac{1}{3}
Least common multiple of 42 and 3 is 42. Convert -\frac{5}{42} and \frac{2}{3} to fractions with denominator 42.
\frac{-\frac{1}{42}}{\frac{-5+28}{42}-\frac{3}{14}}=\frac{1}{3}
Since -\frac{5}{42} and \frac{28}{42} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{42}}{\frac{23}{42}-\frac{3}{14}}=\frac{1}{3}
Add -5 and 28 to get 23.
\frac{-\frac{1}{42}}{\frac{23}{42}-\frac{9}{42}}=\frac{1}{3}
Least common multiple of 42 and 14 is 42. Convert \frac{23}{42} and \frac{3}{14} to fractions with denominator 42.
\frac{-\frac{1}{42}}{\frac{23-9}{42}}=\frac{1}{3}
Since \frac{23}{42} and \frac{9}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{42}}{\frac{14}{42}}=\frac{1}{3}
Subtract 9 from 23 to get 14.
\frac{-\frac{1}{42}}{\frac{1}{3}}=\frac{1}{3}
Reduce the fraction \frac{14}{42} to lowest terms by extracting and canceling out 14.
-\frac{1}{42}\times 3=\frac{1}{3}
Divide -\frac{1}{42} by \frac{1}{3} by multiplying -\frac{1}{42} by the reciprocal of \frac{1}{3}.
\frac{-3}{42}=\frac{1}{3}
Express -\frac{1}{42}\times 3 as a single fraction.
-\frac{1}{14}=\frac{1}{3}
Reduce the fraction \frac{-3}{42} to lowest terms by extracting and canceling out 3.
-\frac{3}{42}=\frac{14}{42}
Least common multiple of 14 and 3 is 42. Convert -\frac{1}{14} and \frac{1}{3} to fractions with denominator 42.
\text{false}
Compare -\frac{3}{42} and \frac{14}{42}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}