Evaluate
\frac{1}{75}\approx 0.013333333
Factor
\frac{1}{3 \cdot 5 ^ {2}} = 0.013333333333333334
Share
Copied to clipboard
\frac{-\frac{1}{42}}{\frac{3}{6}-\frac{2}{6}+\frac{5}{7}+\left(-\frac{2}{3}\right)^{2}\left(-6\right)}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{-\frac{1}{42}}{\frac{3-2}{6}+\frac{5}{7}+\left(-\frac{2}{3}\right)^{2}\left(-6\right)}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{42}}{\frac{1}{6}+\frac{5}{7}+\left(-\frac{2}{3}\right)^{2}\left(-6\right)}
Subtract 2 from 3 to get 1.
\frac{-\frac{1}{42}}{\frac{7}{42}+\frac{30}{42}+\left(-\frac{2}{3}\right)^{2}\left(-6\right)}
Least common multiple of 6 and 7 is 42. Convert \frac{1}{6} and \frac{5}{7} to fractions with denominator 42.
\frac{-\frac{1}{42}}{\frac{7+30}{42}+\left(-\frac{2}{3}\right)^{2}\left(-6\right)}
Since \frac{7}{42} and \frac{30}{42} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{42}}{\frac{37}{42}+\left(-\frac{2}{3}\right)^{2}\left(-6\right)}
Add 7 and 30 to get 37.
\frac{-\frac{1}{42}}{\frac{37}{42}+\frac{4}{9}\left(-6\right)}
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{-\frac{1}{42}}{\frac{37}{42}+\frac{4\left(-6\right)}{9}}
Express \frac{4}{9}\left(-6\right) as a single fraction.
\frac{-\frac{1}{42}}{\frac{37}{42}+\frac{-24}{9}}
Multiply 4 and -6 to get -24.
\frac{-\frac{1}{42}}{\frac{37}{42}-\frac{8}{3}}
Reduce the fraction \frac{-24}{9} to lowest terms by extracting and canceling out 3.
\frac{-\frac{1}{42}}{\frac{37}{42}-\frac{112}{42}}
Least common multiple of 42 and 3 is 42. Convert \frac{37}{42} and \frac{8}{3} to fractions with denominator 42.
\frac{-\frac{1}{42}}{\frac{37-112}{42}}
Since \frac{37}{42} and \frac{112}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{42}}{\frac{-75}{42}}
Subtract 112 from 37 to get -75.
\frac{-\frac{1}{42}}{-\frac{25}{14}}
Reduce the fraction \frac{-75}{42} to lowest terms by extracting and canceling out 3.
-\frac{1}{42}\left(-\frac{14}{25}\right)
Divide -\frac{1}{42} by -\frac{25}{14} by multiplying -\frac{1}{42} by the reciprocal of -\frac{25}{14}.
\frac{-\left(-14\right)}{42\times 25}
Multiply -\frac{1}{42} times -\frac{14}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{14}{1050}
Do the multiplications in the fraction \frac{-\left(-14\right)}{42\times 25}.
\frac{1}{75}
Reduce the fraction \frac{14}{1050} to lowest terms by extracting and canceling out 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}