Evaluate
-\frac{\left(x+2y\right)\left(x+4y\right)}{8}
Expand
-\frac{3xy}{4}-\frac{x^{2}}{8}-y^{2}
Share
Copied to clipboard
\left(-\frac{1}{4}x-y\right)\left(\left(-\left(-\frac{1}{2}\right)\right)x+y\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\left(-\frac{1}{4}x-y\right)\left(\frac{1}{2}x+y\right)
The opposite of -\frac{1}{2} is \frac{1}{2}.
-\frac{1}{4}x\times \frac{1}{2}x-\frac{1}{4}xy-y\times \frac{1}{2}x-y^{2}
Apply the distributive property by multiplying each term of -\frac{1}{4}x-y by each term of \frac{1}{2}x+y.
-\frac{1}{4}x^{2}\times \frac{1}{2}-\frac{1}{4}xy-y\times \frac{1}{2}x-y^{2}
Multiply x and x to get x^{2}.
\frac{-1}{4\times 2}x^{2}-\frac{1}{4}xy-y\times \frac{1}{2}x-y^{2}
Multiply -\frac{1}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{8}x^{2}-\frac{1}{4}xy-y\times \frac{1}{2}x-y^{2}
Do the multiplications in the fraction \frac{-1}{4\times 2}.
-\frac{1}{8}x^{2}-\frac{1}{4}xy-y\times \frac{1}{2}x-y^{2}
Fraction \frac{-1}{8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
-\frac{1}{8}x^{2}-\frac{1}{4}xy-\frac{1}{2}yx-y^{2}
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
-\frac{1}{8}x^{2}-\frac{3}{4}xy-y^{2}
Combine -\frac{1}{4}xy and -\frac{1}{2}yx to get -\frac{3}{4}xy.
\left(-\frac{1}{4}x-y\right)\left(\left(-\left(-\frac{1}{2}\right)\right)x+y\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\left(-\frac{1}{4}x-y\right)\left(\frac{1}{2}x+y\right)
The opposite of -\frac{1}{2} is \frac{1}{2}.
-\frac{1}{4}x\times \frac{1}{2}x-\frac{1}{4}xy-y\times \frac{1}{2}x-y^{2}
Apply the distributive property by multiplying each term of -\frac{1}{4}x-y by each term of \frac{1}{2}x+y.
-\frac{1}{4}x^{2}\times \frac{1}{2}-\frac{1}{4}xy-y\times \frac{1}{2}x-y^{2}
Multiply x and x to get x^{2}.
\frac{-1}{4\times 2}x^{2}-\frac{1}{4}xy-y\times \frac{1}{2}x-y^{2}
Multiply -\frac{1}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{8}x^{2}-\frac{1}{4}xy-y\times \frac{1}{2}x-y^{2}
Do the multiplications in the fraction \frac{-1}{4\times 2}.
-\frac{1}{8}x^{2}-\frac{1}{4}xy-y\times \frac{1}{2}x-y^{2}
Fraction \frac{-1}{8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
-\frac{1}{8}x^{2}-\frac{1}{4}xy-\frac{1}{2}yx-y^{2}
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
-\frac{1}{8}x^{2}-\frac{3}{4}xy-y^{2}
Combine -\frac{1}{4}xy and -\frac{1}{2}yx to get -\frac{3}{4}xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}