Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{1}{3}\right)^{2}\left(x^{2}\right)^{2}y^{2}\times \frac{5}{4}x+\frac{\left(\frac{1}{2}x^{2}y\right)^{4}}{-\frac{9}{20}x^{3}y^{2}}
Expand \left(-\frac{1}{3}x^{2}y\right)^{2}.
\left(-\frac{1}{3}\right)^{2}x^{4}y^{2}\times \frac{5}{4}x+\frac{\left(\frac{1}{2}x^{2}y\right)^{4}}{-\frac{9}{20}x^{3}y^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{9}x^{4}y^{2}\times \frac{5}{4}x+\frac{\left(\frac{1}{2}x^{2}y\right)^{4}}{-\frac{9}{20}x^{3}y^{2}}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{5}{36}x^{4}y^{2}x+\frac{\left(\frac{1}{2}x^{2}y\right)^{4}}{-\frac{9}{20}x^{3}y^{2}}
Multiply \frac{1}{9} and \frac{5}{4} to get \frac{5}{36}.
\frac{5}{36}x^{5}y^{2}+\frac{\left(\frac{1}{2}x^{2}y\right)^{4}}{-\frac{9}{20}x^{3}y^{2}}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{5}{36}x^{5}y^{2}+\frac{\left(\frac{1}{2}\right)^{4}\left(x^{2}\right)^{4}y^{4}}{-\frac{9}{20}x^{3}y^{2}}
Expand \left(\frac{1}{2}x^{2}y\right)^{4}.
\frac{5}{36}x^{5}y^{2}+\frac{\left(\frac{1}{2}\right)^{4}x^{8}y^{4}}{-\frac{9}{20}x^{3}y^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{5}{36}x^{5}y^{2}+\frac{\frac{1}{16}x^{8}y^{4}}{-\frac{9}{20}x^{3}y^{2}}
Calculate \frac{1}{2} to the power of 4 and get \frac{1}{16}.
\frac{5}{36}x^{5}y^{2}+\frac{\frac{1}{16}y^{2}x^{5}}{-\frac{9}{20}}
Cancel out y^{2}x^{3} in both numerator and denominator.
\frac{5}{36}x^{5}y^{2}+\frac{\frac{1}{16}y^{2}x^{5}\times 20}{-9}
Divide \frac{1}{16}y^{2}x^{5} by -\frac{9}{20} by multiplying \frac{1}{16}y^{2}x^{5} by the reciprocal of -\frac{9}{20}.
\frac{5}{36}x^{5}y^{2}+\frac{\frac{5}{4}y^{2}x^{5}}{-9}
Multiply \frac{1}{16} and 20 to get \frac{5}{4}.
\frac{5}{36}x^{5}y^{2}-\frac{5}{36}y^{2}x^{5}
Divide \frac{5}{4}y^{2}x^{5} by -9 to get -\frac{5}{36}y^{2}x^{5}.
0
Combine \frac{5}{36}x^{5}y^{2} and -\frac{5}{36}y^{2}x^{5} to get 0.