Evaluate
\frac{8}{3z^{2}}
Expand
\frac{8}{3z^{2}}
Share
Copied to clipboard
\frac{-\frac{1}{27}\left(-2\times \frac{z}{3}\right)^{-2}}{2^{-3}\left(2-\left(\frac{2}{3}\right)^{-2}\right)}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
\frac{-\frac{1}{27}\times \left(\frac{-2z}{3}\right)^{-2}}{2^{-3}\left(2-\left(\frac{2}{3}\right)^{-2}\right)}
Express -2\times \frac{z}{3} as a single fraction.
\frac{-\frac{1}{27}\times \frac{\left(-2z\right)^{-2}}{3^{-2}}}{2^{-3}\left(2-\left(\frac{2}{3}\right)^{-2}\right)}
To raise \frac{-2z}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}}}{2^{-3}\left(2-\left(\frac{2}{3}\right)^{-2}\right)}
Multiply -\frac{1}{27} times \frac{\left(-2z\right)^{-2}}{3^{-2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}}}{\frac{1}{8}\left(2-\left(\frac{2}{3}\right)^{-2}\right)}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}}}{\frac{1}{8}\left(2-\frac{9}{4}\right)}
Calculate \frac{2}{3} to the power of -2 and get \frac{9}{4}.
\frac{\frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}}}{\frac{1}{8}\left(-\frac{1}{4}\right)}
Subtract \frac{9}{4} from 2 to get -\frac{1}{4}.
\frac{\frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}}}{-\frac{1}{32}}
Multiply \frac{1}{8} and -\frac{1}{4} to get -\frac{1}{32}.
\frac{-\left(-2z\right)^{-2}\times 32}{27\times 3^{-2}\left(-1\right)}
Divide \frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}} by -\frac{1}{32} by multiplying \frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}} by the reciprocal of -\frac{1}{32}.
\frac{32\left(-2z\right)^{-2}}{27\times 3^{-2}}
Cancel out -1 in both numerator and denominator.
\frac{32\left(-2\right)^{-2}z^{-2}}{27\times 3^{-2}}
Expand \left(-2z\right)^{-2}.
\frac{32\times \frac{1}{4}z^{-2}}{27\times 3^{-2}}
Calculate -2 to the power of -2 and get \frac{1}{4}.
\frac{8z^{-2}}{27\times 3^{-2}}
Multiply 32 and \frac{1}{4} to get 8.
\frac{8z^{-2}}{27\times \frac{1}{9}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{8z^{-2}}{3}
Multiply 27 and \frac{1}{9} to get 3.
\frac{-\frac{1}{27}\left(-2\times \frac{z}{3}\right)^{-2}}{2^{-3}\left(2-\left(\frac{2}{3}\right)^{-2}\right)}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
\frac{-\frac{1}{27}\times \left(\frac{-2z}{3}\right)^{-2}}{2^{-3}\left(2-\left(\frac{2}{3}\right)^{-2}\right)}
Express -2\times \frac{z}{3} as a single fraction.
\frac{-\frac{1}{27}\times \frac{\left(-2z\right)^{-2}}{3^{-2}}}{2^{-3}\left(2-\left(\frac{2}{3}\right)^{-2}\right)}
To raise \frac{-2z}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}}}{2^{-3}\left(2-\left(\frac{2}{3}\right)^{-2}\right)}
Multiply -\frac{1}{27} times \frac{\left(-2z\right)^{-2}}{3^{-2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}}}{\frac{1}{8}\left(2-\left(\frac{2}{3}\right)^{-2}\right)}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}}}{\frac{1}{8}\left(2-\frac{9}{4}\right)}
Calculate \frac{2}{3} to the power of -2 and get \frac{9}{4}.
\frac{\frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}}}{\frac{1}{8}\left(-\frac{1}{4}\right)}
Subtract \frac{9}{4} from 2 to get -\frac{1}{4}.
\frac{\frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}}}{-\frac{1}{32}}
Multiply \frac{1}{8} and -\frac{1}{4} to get -\frac{1}{32}.
\frac{-\left(-2z\right)^{-2}\times 32}{27\times 3^{-2}\left(-1\right)}
Divide \frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}} by -\frac{1}{32} by multiplying \frac{-\left(-2z\right)^{-2}}{27\times 3^{-2}} by the reciprocal of -\frac{1}{32}.
\frac{32\left(-2z\right)^{-2}}{27\times 3^{-2}}
Cancel out -1 in both numerator and denominator.
\frac{32\left(-2\right)^{-2}z^{-2}}{27\times 3^{-2}}
Expand \left(-2z\right)^{-2}.
\frac{32\times \frac{1}{4}z^{-2}}{27\times 3^{-2}}
Calculate -2 to the power of -2 and get \frac{1}{4}.
\frac{8z^{-2}}{27\times 3^{-2}}
Multiply 32 and \frac{1}{4} to get 8.
\frac{8z^{-2}}{27\times \frac{1}{9}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{8z^{-2}}{3}
Multiply 27 and \frac{1}{9} to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}