Evaluate
-\frac{4}{3}\approx -1.333333333
Factor
-\frac{4}{3} = -1\frac{1}{3} = -1.3333333333333333
Share
Copied to clipboard
-\frac{1}{3}\times 125+3\times 25-8\times 5-\left(-\frac{64}{3}+48-32\right)
Calculate 5 to the power of 3 and get 125.
\frac{-125}{3}+3\times 25-8\times 5-\left(-\frac{64}{3}+48-32\right)
Express -\frac{1}{3}\times 125 as a single fraction.
-\frac{125}{3}+3\times 25-8\times 5-\left(-\frac{64}{3}+48-32\right)
Fraction \frac{-125}{3} can be rewritten as -\frac{125}{3} by extracting the negative sign.
-\frac{125}{3}+75-8\times 5-\left(-\frac{64}{3}+48-32\right)
Multiply 3 and 25 to get 75.
-\frac{125}{3}+\frac{225}{3}-8\times 5-\left(-\frac{64}{3}+48-32\right)
Convert 75 to fraction \frac{225}{3}.
\frac{-125+225}{3}-8\times 5-\left(-\frac{64}{3}+48-32\right)
Since -\frac{125}{3} and \frac{225}{3} have the same denominator, add them by adding their numerators.
\frac{100}{3}-8\times 5-\left(-\frac{64}{3}+48-32\right)
Add -125 and 225 to get 100.
\frac{100}{3}-40-\left(-\frac{64}{3}+48-32\right)
Multiply 8 and 5 to get 40.
\frac{100}{3}-\frac{120}{3}-\left(-\frac{64}{3}+48-32\right)
Convert 40 to fraction \frac{120}{3}.
\frac{100-120}{3}-\left(-\frac{64}{3}+48-32\right)
Since \frac{100}{3} and \frac{120}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{20}{3}-\left(-\frac{64}{3}+48-32\right)
Subtract 120 from 100 to get -20.
-\frac{20}{3}-\left(-\frac{64}{3}+\frac{144}{3}-32\right)
Convert 48 to fraction \frac{144}{3}.
-\frac{20}{3}-\left(\frac{-64+144}{3}-32\right)
Since -\frac{64}{3} and \frac{144}{3} have the same denominator, add them by adding their numerators.
-\frac{20}{3}-\left(\frac{80}{3}-32\right)
Add -64 and 144 to get 80.
-\frac{20}{3}-\left(\frac{80}{3}-\frac{96}{3}\right)
Convert 32 to fraction \frac{96}{3}.
-\frac{20}{3}-\frac{80-96}{3}
Since \frac{80}{3} and \frac{96}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{20}{3}-\left(-\frac{16}{3}\right)
Subtract 96 from 80 to get -16.
-\frac{20}{3}+\frac{16}{3}
The opposite of -\frac{16}{3} is \frac{16}{3}.
\frac{-20+16}{3}
Since -\frac{20}{3} and \frac{16}{3} have the same denominator, add them by adding their numerators.
-\frac{4}{3}
Add -20 and 16 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}