Evaluate
\frac{14}{5}=2.8
Factor
\frac{2 \cdot 7}{5} = 2\frac{4}{5} = 2.8
Share
Copied to clipboard
-\frac{1}{250}\times 625+\frac{3}{250}\times 5^{2}+5
Calculate 5 to the power of 4 and get 625.
\frac{-625}{250}+\frac{3}{250}\times 5^{2}+5
Express -\frac{1}{250}\times 625 as a single fraction.
-\frac{5}{2}+\frac{3}{250}\times 5^{2}+5
Reduce the fraction \frac{-625}{250} to lowest terms by extracting and canceling out 125.
-\frac{5}{2}+\frac{3}{250}\times 25+5
Calculate 5 to the power of 2 and get 25.
-\frac{5}{2}+\frac{3\times 25}{250}+5
Express \frac{3}{250}\times 25 as a single fraction.
-\frac{5}{2}+\frac{75}{250}+5
Multiply 3 and 25 to get 75.
-\frac{5}{2}+\frac{3}{10}+5
Reduce the fraction \frac{75}{250} to lowest terms by extracting and canceling out 25.
-\frac{25}{10}+\frac{3}{10}+5
Least common multiple of 2 and 10 is 10. Convert -\frac{5}{2} and \frac{3}{10} to fractions with denominator 10.
\frac{-25+3}{10}+5
Since -\frac{25}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
\frac{-22}{10}+5
Add -25 and 3 to get -22.
-\frac{11}{5}+5
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
-\frac{11}{5}+\frac{25}{5}
Convert 5 to fraction \frac{25}{5}.
\frac{-11+25}{5}
Since -\frac{11}{5} and \frac{25}{5} have the same denominator, add them by adding their numerators.
\frac{14}{5}
Add -11 and 25 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}