Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\frac{1}{2}\right)^{2}\left(x^{2}\right)^{2}y^{2}z^{2}\left(-\frac{4}{3}xy^{2}z\right)^{2}}{-\frac{1}{9}x^{3}y^{2}z}
Expand \left(-\frac{1}{2}x^{2}yz\right)^{2}.
\frac{\left(-\frac{1}{2}\right)^{2}x^{4}y^{2}z^{2}\left(-\frac{4}{3}xy^{2}z\right)^{2}}{-\frac{1}{9}x^{3}y^{2}z}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{4}x^{4}y^{2}z^{2}\left(-\frac{4}{3}xy^{2}z\right)^{2}}{-\frac{1}{9}x^{3}y^{2}z}
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{1}{4}x^{4}y^{2}z^{2}\left(-\frac{4}{3}\right)^{2}x^{2}\left(y^{2}\right)^{2}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
Expand \left(-\frac{4}{3}xy^{2}z\right)^{2}.
\frac{\frac{1}{4}x^{4}y^{2}z^{2}\left(-\frac{4}{3}\right)^{2}x^{2}y^{4}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{4}x^{4}y^{2}z^{2}\times \frac{16}{9}x^{2}y^{4}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
Calculate -\frac{4}{3} to the power of 2 and get \frac{16}{9}.
\frac{\frac{4}{9}x^{4}y^{2}z^{2}x^{2}y^{4}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
Multiply \frac{1}{4} and \frac{16}{9} to get \frac{4}{9}.
\frac{\frac{4}{9}x^{6}y^{2}z^{2}y^{4}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\frac{4}{9}x^{6}y^{6}z^{2}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{\frac{4}{9}x^{6}y^{6}z^{4}}{-\frac{1}{9}x^{3}y^{2}z}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{\frac{4}{9}x^{3}z^{3}y^{4}}{-\frac{1}{9}}
Cancel out zy^{2}x^{3} in both numerator and denominator.
\frac{\frac{4}{9}x^{3}z^{3}y^{4}\times 9}{-1}
Divide \frac{4}{9}x^{3}z^{3}y^{4} by -\frac{1}{9} by multiplying \frac{4}{9}x^{3}z^{3}y^{4} by the reciprocal of -\frac{1}{9}.
\frac{4x^{3}z^{3}y^{4}}{-1}
Multiply \frac{4}{9} and 9 to get 4.
-4x^{3}z^{3}y^{4}
Anything divided by -1 gives its opposite.
\frac{\left(-\frac{1}{2}\right)^{2}\left(x^{2}\right)^{2}y^{2}z^{2}\left(-\frac{4}{3}xy^{2}z\right)^{2}}{-\frac{1}{9}x^{3}y^{2}z}
Expand \left(-\frac{1}{2}x^{2}yz\right)^{2}.
\frac{\left(-\frac{1}{2}\right)^{2}x^{4}y^{2}z^{2}\left(-\frac{4}{3}xy^{2}z\right)^{2}}{-\frac{1}{9}x^{3}y^{2}z}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{4}x^{4}y^{2}z^{2}\left(-\frac{4}{3}xy^{2}z\right)^{2}}{-\frac{1}{9}x^{3}y^{2}z}
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{1}{4}x^{4}y^{2}z^{2}\left(-\frac{4}{3}\right)^{2}x^{2}\left(y^{2}\right)^{2}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
Expand \left(-\frac{4}{3}xy^{2}z\right)^{2}.
\frac{\frac{1}{4}x^{4}y^{2}z^{2}\left(-\frac{4}{3}\right)^{2}x^{2}y^{4}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{4}x^{4}y^{2}z^{2}\times \frac{16}{9}x^{2}y^{4}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
Calculate -\frac{4}{3} to the power of 2 and get \frac{16}{9}.
\frac{\frac{4}{9}x^{4}y^{2}z^{2}x^{2}y^{4}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
Multiply \frac{1}{4} and \frac{16}{9} to get \frac{4}{9}.
\frac{\frac{4}{9}x^{6}y^{2}z^{2}y^{4}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\frac{4}{9}x^{6}y^{6}z^{2}z^{2}}{-\frac{1}{9}x^{3}y^{2}z}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{\frac{4}{9}x^{6}y^{6}z^{4}}{-\frac{1}{9}x^{3}y^{2}z}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{\frac{4}{9}x^{3}z^{3}y^{4}}{-\frac{1}{9}}
Cancel out zy^{2}x^{3} in both numerator and denominator.
\frac{\frac{4}{9}x^{3}z^{3}y^{4}\times 9}{-1}
Divide \frac{4}{9}x^{3}z^{3}y^{4} by -\frac{1}{9} by multiplying \frac{4}{9}x^{3}z^{3}y^{4} by the reciprocal of -\frac{1}{9}.
\frac{4x^{3}z^{3}y^{4}}{-1}
Multiply \frac{4}{9} and 9 to get 4.
-4x^{3}z^{3}y^{4}
Anything divided by -1 gives its opposite.